This is the official repository of
PLUTO: Push the Limit of Imitation Learning-based Planning for Autonomous Driving,
Jie Cheng, Yingbing Chen, and Qifeng Chen
Setup the nuPlan dataset following the offiical-doc
conda create -n pluto python=3.9
conda activate pluto
# install nuplan-devkit
git clone https://github.com/motional/nuplan-devkit.git && cd nuplan-devkit
pip install -e .
pip install -r ./requirements.txt
# setup pluto
cd ..
git clone https://github.com/jchengai/pluto.git && cd pluto
sh ./script/setup_env.sh
Preprocess the dataset to accelerate training. It is recommended to run a small sanity check to make sure everything is correctly setup.
python run_training.py \
py_func=cache +training=train_pluto \
scenario_builder=nuplan_mini \
cache.cache_path=/nuplan/exp/sanity_check \
cache.cleanup_cache=true \
scenario_filter=training_scenarios_tiny \
worker=sequential
Then preprocess the whole nuPlan training set (this will take some time). You may need to change cache.cache_path
to suit your condition
export PYTHONPATH=$PYTHONPATH:$(pwd)
python run_training.py \
py_func=cache +training=train_pluto \
scenario_builder=nuplan \
cache.cache_path=/nuplan/exp/cache_pluto_1M \
cache.cleanup_cache=true \
scenario_filter=training_scenarios_1M \
worker.threads_per_node=40
(The training part it not fully tested)
Same, it is recommended to run a sanity check first:
CUDA_VISIBLE_DEVICES=0 python run_training.py \
py_func=train +training=train_pluto \
worker=single_machine_thread_pool worker.max_workers=4 \
scenario_builder=nuplan cache.cache_path=/nuplan/exp/sanity_check cache.use_cache_without_dataset=true \
data_loader.params.batch_size=4 data_loader.params.num_workers=1
Training on the full dataset (without CIL):
CUDA_VISIBLE_DEVICES=0,1,2,3 python run_training.py \
py_func=train +training=train_pluto \
worker=single_machine_thread_pool worker.max_workers=32 \
scenario_builder=nuplan cache.cache_path=/nuplan/exp/cache_pluto_1M cache.use_cache_without_dataset=true \
data_loader.params.batch_size=32 data_loader.params.num_workers=16 \
lr=1e-3 epochs=25 warmup_epochs=3 weight_decay=0.0001 \
wandb.mode=online wandb.project=nuplan wandb.name=pluto
-
add option
model.use_hidden_proj=true +custom_trainer.use_contrast_loss=true
to enable CIL. -
you can remove wandb related configurations if your prefer tensorboard.
Download and place the checkpoint in the pluto/checkpoints
folder.
Model | Download |
---|---|
Pluto-1M-aux-cil | OneDrive |
Run simulation for a random scenario in the nuPlan-mini split
sh ./script/run_pluto_planner.sh pluto_planner nuplan_mini mini_demo_scenario pluto_1M_aux_cil.ckpt /dir_to_save_the_simulation_result_video
The rendered simulation video will be saved to the specified directory (need change /dir_to_save_the_simulation_result_video
).
The code is under cleaning and will be released gradually.
- improve docs
- training code
- visualization
- pluto-planner & checkpoint
- feature builder & model
- initial repo & paper
If you find this repo useful, please consider giving us a star 🌟 and citing our related paper.
@article{cheng2024pluto,
title={PLUTO: Pushing the Limit of Imitation Learning-based Planning for Autonomous Driving},
author={Cheng, Jie and Chen, Yingbing and Chen, Qifeng},
journal={arXiv preprint arXiv:2404.14327},
year={2024}
}