forked from luckytyphlosion/agbcc
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
74e1715
commit ca3795d
Showing
146 changed files
with
18,016 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
|
||
/* @(#)e_acos.c 5.1 93/09/24 */ | ||
/* | ||
* ==================================================== | ||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
* | ||
* Developed at SunPro, a Sun Microsystems, Inc. business. | ||
* Permission to use, copy, modify, and distribute this | ||
* software is freely granted, provided that this notice | ||
* is preserved. | ||
* ==================================================== | ||
*/ | ||
|
||
/* __ieee754_acos(x) | ||
* Method : | ||
* acos(x) = pi/2 - asin(x) | ||
* acos(-x) = pi/2 + asin(x) | ||
* For |x|<=0.5 | ||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) | ||
* For x>0.5 | ||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) | ||
* = 2asin(sqrt((1-x)/2)) | ||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) | ||
* = 2f + (2c + 2s*z*R(z)) | ||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term | ||
* for f so that f+c ~ sqrt(z). | ||
* For x<-0.5 | ||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2)) | ||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) | ||
* | ||
* Special cases: | ||
* if x is NaN, return x itself; | ||
* if |x|>1, return NaN with invalid signal. | ||
* | ||
* Function needed: sqrt | ||
*/ | ||
|
||
#include "fdlibm.h" | ||
|
||
#ifndef _DOUBLE_IS_32BITS | ||
|
||
#ifdef __STDC__ | ||
static const double | ||
#else | ||
static double | ||
#endif | ||
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | ||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ | ||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ | ||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ | ||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ | ||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ | ||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ | ||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ | ||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ | ||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ | ||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ | ||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ | ||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ | ||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ | ||
|
||
#ifdef __STDC__ | ||
double __ieee754_acos(double x) | ||
#else | ||
double __ieee754_acos(x) | ||
double x; | ||
#endif | ||
{ | ||
double z,p,q,r,w,s,c,df; | ||
__int32_t hx,ix; | ||
GET_HIGH_WORD(hx,x); | ||
ix = hx&0x7fffffff; | ||
if(ix>=0x3ff00000) { /* |x| >= 1 */ | ||
__uint32_t lx; | ||
GET_LOW_WORD(lx,x); | ||
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ | ||
if(hx>0) return 0.0; /* acos(1) = 0 */ | ||
else return pi+2.0*pio2_lo; /* acos(-1)= pi */ | ||
} | ||
return (x-x)/(x-x); /* acos(|x|>1) is NaN */ | ||
} | ||
if(ix<0x3fe00000) { /* |x| < 0.5 */ | ||
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ | ||
z = x*x; | ||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); | ||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); | ||
r = p/q; | ||
return pio2_hi - (x - (pio2_lo-x*r)); | ||
} else if (hx<0) { /* x < -0.5 */ | ||
z = (one+x)*0.5; | ||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); | ||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); | ||
s = __ieee754_sqrt(z); | ||
r = p/q; | ||
w = r*s-pio2_lo; | ||
return pi - 2.0*(s+w); | ||
} else { /* x > 0.5 */ | ||
z = (one-x)*0.5; | ||
s = __ieee754_sqrt(z); | ||
df = s; | ||
SET_LOW_WORD(df,0); | ||
c = (z-df*df)/(s+df); | ||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); | ||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); | ||
r = p/q; | ||
w = r*s+c; | ||
return 2.0*(df+w); | ||
} | ||
} | ||
|
||
#endif /* defined(_DOUBLE_IS_32BITS) */ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
|
||
/* @(#)e_acosh.c 5.1 93/09/24 */ | ||
/* | ||
* ==================================================== | ||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
* | ||
* Developed at SunPro, a Sun Microsystems, Inc. business. | ||
* Permission to use, copy, modify, and distribute this | ||
* software is freely granted, provided that this notice | ||
* is preserved. | ||
* ==================================================== | ||
* | ||
*/ | ||
|
||
/* __ieee754_acosh(x) | ||
* Method : | ||
* Based on | ||
* acosh(x) = log [ x + sqrt(x*x-1) ] | ||
* we have | ||
* acosh(x) := log(x)+ln2, if x is large; else | ||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else | ||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. | ||
* | ||
* Special cases: | ||
* acosh(x) is NaN with signal if x<1. | ||
* acosh(NaN) is NaN without signal. | ||
*/ | ||
|
||
#include "fdlibm.h" | ||
|
||
#ifndef _DOUBLE_IS_32BITS | ||
|
||
#ifdef __STDC__ | ||
static const double | ||
#else | ||
static double | ||
#endif | ||
one = 1.0, | ||
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ | ||
|
||
#ifdef __STDC__ | ||
double __ieee754_acosh(double x) | ||
#else | ||
double __ieee754_acosh(x) | ||
double x; | ||
#endif | ||
{ | ||
double t; | ||
__int32_t hx; | ||
__uint32_t lx; | ||
EXTRACT_WORDS(hx,lx,x); | ||
if(hx<0x3ff00000) { /* x < 1 */ | ||
return (x-x)/(x-x); | ||
} else if(hx >=0x41b00000) { /* x > 2**28 */ | ||
if(hx >=0x7ff00000) { /* x is inf of NaN */ | ||
return x+x; | ||
} else | ||
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */ | ||
} else if(((hx-0x3ff00000)|lx)==0) { | ||
return 0.0; /* acosh(1) = 0 */ | ||
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */ | ||
t=x*x; | ||
return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one))); | ||
} else { /* 1<x<2 */ | ||
t = x-one; | ||
return log1p(t+__ieee754_sqrt(2.0*t+t*t)); | ||
} | ||
} | ||
|
||
#endif /* defined(_DOUBLE_IS_32BITS) */ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
|
||
/* @(#)e_asin.c 5.1 93/09/24 */ | ||
/* | ||
* ==================================================== | ||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
* | ||
* Developed at SunPro, a Sun Microsystems, Inc. business. | ||
* Permission to use, copy, modify, and distribute this | ||
* software is freely granted, provided that this notice | ||
* is preserved. | ||
* ==================================================== | ||
*/ | ||
|
||
/* __ieee754_asin(x) | ||
* Method : | ||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... | ||
* we approximate asin(x) on [0,0.5] by | ||
* asin(x) = x + x*x^2*R(x^2) | ||
* where | ||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3 | ||
* and its remez error is bounded by | ||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) | ||
* | ||
* For x in [0.5,1] | ||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2)) | ||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; | ||
* then for x>0.98 | ||
* asin(x) = pi/2 - 2*(s+s*z*R(z)) | ||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) | ||
* For x<=0.98, let pio4_hi = pio2_hi/2, then | ||
* f = hi part of s; | ||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) | ||
* and | ||
* asin(x) = pi/2 - 2*(s+s*z*R(z)) | ||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) | ||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) | ||
* | ||
* Special cases: | ||
* if x is NaN, return x itself; | ||
* if |x|>1, return NaN with invalid signal. | ||
* | ||
*/ | ||
|
||
|
||
#include "fdlibm.h" | ||
|
||
#ifndef _DOUBLE_IS_32BITS | ||
|
||
#ifdef __STDC__ | ||
static const double | ||
#else | ||
static double | ||
#endif | ||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | ||
huge = 1.000e+300, | ||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ | ||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ | ||
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ | ||
/* coefficient for R(x^2) */ | ||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ | ||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ | ||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ | ||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ | ||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ | ||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ | ||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ | ||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ | ||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ | ||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ | ||
|
||
#ifdef __STDC__ | ||
double __ieee754_asin(double x) | ||
#else | ||
double __ieee754_asin(x) | ||
double x; | ||
#endif | ||
{ | ||
double t,w,p,q,c,r,s; | ||
__int32_t hx,ix; | ||
GET_HIGH_WORD(hx,x); | ||
ix = hx&0x7fffffff; | ||
if(ix>= 0x3ff00000) { /* |x|>= 1 */ | ||
__uint32_t lx; | ||
GET_LOW_WORD(lx,x); | ||
if(((ix-0x3ff00000)|lx)==0) | ||
/* asin(1)=+-pi/2 with inexact */ | ||
return x*pio2_hi+x*pio2_lo; | ||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */ | ||
} else if (ix<0x3fe00000) { /* |x|<0.5 */ | ||
if(ix<0x3e400000) { /* if |x| < 2**-27 */ | ||
if(huge+x>one) return x;/* return x with inexact if x!=0*/ | ||
} else | ||
t = x*x; | ||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); | ||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); | ||
w = p/q; | ||
return x+x*w; | ||
} | ||
/* 1> |x|>= 0.5 */ | ||
w = one-fabs(x); | ||
t = w*0.5; | ||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); | ||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); | ||
s = __ieee754_sqrt(t); | ||
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ | ||
w = p/q; | ||
t = pio2_hi-(2.0*(s+s*w)-pio2_lo); | ||
} else { | ||
w = s; | ||
SET_LOW_WORD(w,0); | ||
c = (t-w*w)/(s+w); | ||
r = p/q; | ||
p = 2.0*s*r-(pio2_lo-2.0*c); | ||
q = pio4_hi-2.0*w; | ||
t = pio4_hi-(p-q); | ||
} | ||
if(hx>0) return t; else return -t; | ||
} | ||
|
||
#endif /* defined(_DOUBLE_IS_32BITS) */ |
Oops, something went wrong.