Skip to content

Commit

Permalink
update single op example (apache#17)
Browse files Browse the repository at this point in the history
  • Loading branch information
merrymercy authored and tmoreau89 committed Nov 25, 2018
1 parent 09ed12c commit 830c532
Show file tree
Hide file tree
Showing 2 changed files with 222 additions and 0 deletions.
5 changes: 5 additions & 0 deletions apps/pynq_rpc/start_rpc_server_to_tracker.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
#!/bin/bash
PROJROOT="$( cd "$( dirname "${BASH_SOURCE[0]}" )/../../" && pwd )"

export PYTHONPATH=${PYTHONPATH}:${PROJROOT}/python:${PROJROOT}/vta/python
python3.6 -m vta.exec.rpc_server --tracker fleet:9190 --key ultra96
217 changes: 217 additions & 0 deletions vta/scripts/tune_conv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
"""Tuning a conv2d operator """
import tvm
import sys
import logging
from tvm import autotvm
from tvm.contrib.util import get_lower_ir
import topi

import vta
import vta.testing
from vta.top.testing import my_clip

env = vta.get_env()

def vta_build_func(measure_input, tmp_dir, **kwargs):
import time
import os
from tvm.autotvm.measure.measure_methods import BuildResult
from random import getrandbits
from tvm.autotvm.util import get_const_tuple
tic = time.time()
try:
filename = os.path.join(tmp_dir, "tmp_func_%0x.tar" % getrandbits(64))
target, task, config = measure_input

with target:
s, args = task.instantiate(config)
if not config.valid():
raise InstantiationError(config.errors)

func = vta.build(s, args, target='ext_dev', target_host=task.target_host)

arg_info = tuple((get_const_tuple(x.shape), x.dtype) for x in args)
func.export_library(filename)
except Exception as e: # pylint: disable=broad-except
return BuildResult(None, None, e, time.time() - tic)
return BuildResult(filename, arg_info, None, time.time() - tic)


def schedule_packed_conv2d(cfg, outs,
skip_load_inp=False, skip_load_wgt=False, skip_load_acc=False,
skip_store_out=False, skip_alu=False, skip_gemm=False):
"""Schedule the packed conv2d.
"""
assert len(outs) == 1
output = outs[0]
ewise_inputs = []
ewise_ops = []
conv2d_res = []
assert output.op.input_tensors[0].dtype == "int32"

def _traverse(op):
if topi.tag.is_broadcast(op.tag):
if not op.same_as(output.op):
ewise_ops.append(op)
for tensor in op.input_tensors:
if isinstance(tensor.op, tvm.tensor.PlaceholderOp):
ewise_inputs.append((op, tensor))
else:
_traverse(tensor.op)
else:
assert op.tag == "packed_conv2d"
conv2d_res.append(op)

_traverse(output.op)
assert len(conv2d_res) == 1
conv2d_stage = conv2d_res[0].output(0)
s = tvm.create_schedule(output.op)

##### space definition begin #####
b, co, h, w, bi, ci = s[conv2d_stage].op.axis
ci, kh, kw, bci = s[conv2d_stage].op.reduce_axis
cfg.define_split('tile_b', b, num_outputs=2)
cfg.define_split('tile_h', h, num_outputs=2)
cfg.define_split('tile_w', w, num_outputs=2)
cfg.define_split('tile_ci', ci, num_outputs=2)
cfg.define_split('tile_co', co, num_outputs=2)
cfg.define_knob('oc_nthread', [1, 2])
cfg.define_knob('h_nthread', [1, 2])
###### space definition end ######

data, kernel = conv2d_stage.op.input_tensors
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
temp = data.op.input_tensors[0]
pad_data = data
data = temp
else:
pad_data = None

mock = env.mock
load_inp = mock.dma_copy if skip_load_inp else env.dma_copy
load_wgt = mock.dma_copy if skip_load_wgt else env.dma_copy
load_acc = mock.dma_copy if skip_load_acc else env.dma_copy
store_out = mock.dma_copy if skip_store_out else env.dma_copy
alu = mock.alu if skip_alu else env.alu
gemm = mock.gemm if skip_gemm else env.gemm

# schedule
oshape = topi.util.get_const_tuple(output.shape)

# setup pad
if pad_data is not None:
cdata = pad_data
s[pad_data].set_scope(env.inp_scope)
else:
cdata = s.cache_read(data, env.inp_scope, [conv2d_stage])
ckernel = s.cache_read(kernel, env.wgt_scope, [conv2d_stage])
s[conv2d_stage].set_scope(env.acc_scope)

# cache read input
cache_read_ewise = []
for consumer, tensor in ewise_inputs:
cache_read_ewise.append(
s.cache_read(tensor, env.acc_scope, [consumer]))

# set ewise scope
for op in ewise_ops:
s[op].set_scope(env.acc_scope)
s[op].pragma(s[op].op.axis[0], alu)

# tile
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[output].op.axis
x_co0, x_co1 = cfg['tile_co'].apply(s, output, x_co)
x_i0, x_i1 = cfg['tile_h'].apply(s, output, x_i)
x_j0, x_j1 = cfg['tile_w'].apply(s, output, x_j)
s[output].reorder(x_bo, x_i0, x_co0, x_j0, x_co1, x_i1, x_j1, x_bi, x_ci)
store_pt = x_j0

# set all compute scopes
s[conv2d_stage].compute_at(s[output], store_pt)
for op in ewise_ops:
s[op].compute_at(s[output], store_pt)

for tensor in cache_read_ewise:
s[tensor].compute_at(s[output], store_pt)
s[tensor].pragma(s[tensor].op.axis[0], load_acc)

# virtual threading along output channel axes
if cfg['oc_nthread'].val > 1:
_, v_t = s[output].split(x_co0, factor=cfg['oc_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))

# virtual threading along spatial rows
if cfg['h_nthread'].val > 1:
_, v_t = s[output].split(x_i0, factor=cfg['h_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))

x_bo, x_co, x_i, x_j, x_bi, x_ci = s[conv2d_stage].op.axis
k_o, d_i, d_j, k_i = s[conv2d_stage].op.reduce_axis
s[conv2d_stage].reorder(x_bo, k_o, x_j, d_j, d_i, x_co, x_i, x_bi, x_ci, k_i)

k_o, _ = cfg['tile_ci'].apply(s, conv2d_stage, k_o)
s[cdata].compute_at(s[conv2d_stage], k_o)
s[ckernel].compute_at(s[conv2d_stage], k_o)

# Use VTA instructions
s[cdata].pragma(s[cdata].op.axis[0], load_inp)
s[ckernel].pragma(s[ckernel].op.axis[0], load_wgt)
s[conv2d_stage].tensorize(x_bi, gemm)
s[output].pragma(x_co1, store_out)
return s

@autotvm.template
def conv2d(N, CI, H, W, CO, KH, KW, strides, padding, in_dtype, out_dtype):
data_shape = (N//env.BATCH, CI//env.BLOCK_IN, H, W, env.BATCH, env.BLOCK_IN)
kernel_shape = (CO//env.BLOCK_OUT, CI//env.BLOCK_IN, KH, KW, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (N//env.BATCH, CO//env.BLOCK_OUT, 1, 1, env.BATCH, env.BLOCK_OUT)

OH = (H + 2 * padding[0] - KH) // strides[0] + 1
OW = (W + 2 * padding[1] - KW) // strides[1] + 1

data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
bias = tvm.placeholder(bias_shape, name="kernel", dtype=env.acc_dtype)

w_pack_factor = 1 << (3 - env.LOG_WGT_WIDTH)
kernel_shape_pack = kernel_shape[:-1] + (kernel_shape[-1] // w_pack_factor,)
kernel_arg = tvm.placeholder(kernel_shape_pack, dtype="int8", name="kernel_arg")
kernel = vta.reinterpret(kernel_arg, kernel_shape, dtype=env.wgt_dtype)

res_conv = vta.top.packed_conv2d(data, kernel, padding=padding, strides=strides)
res = topi.right_shift(res_conv, 8)
res = topi.add(res, bias)
res = my_clip(res, 0, 127)
res = topi.cast(res, "int8")

cfg = autotvm.get_config()
s = schedule_packed_conv2d(cfg, [res])

cfg.add_flop(2 * N * CI * OH * OW * CO * KH * KW)
return s, [data, kernel_arg, bias, res]

if __name__ == '__main__':
N, CI, H, W, CO, KH, KW, strides, padding, in_dtype, out_dtype = \
1, 64, 56, 56, 64, 3, 3, (1, 1), (1, 1), 'int8', 'int32'

task = autotvm.task.create(conv2d, args=(N, CI, H, W, CO, KH, KW, strides, padding, in_dtype, out_dtype),
target='ext_dev', target_host=env.target_host)
print(task.config_space)

# logging config (for printing tuning log to the screen)
logging.getLogger('autotvm').setLevel(logging.DEBUG)
logging.getLogger('autotvm').addHandler(logging.StreamHandler(sys.stdout))

measure_option = autotvm.measure_option(
builder=autotvm.LocalBuilder(build_func=vta_build_func),
runner=autotvm.RPCRunner(
'ultra96', 'fleet', 9190))

tuner = autotvm.tuner.RandomTuner(task)
tuner.tune(n_trial=len(task.config_space),
measure_option=measure_option,
callbacks=[autotvm.callback.log_to_file('conv2d.log')])

print(tuner.best_config)

0 comments on commit 830c532

Please sign in to comment.