Skip to content

Commit

Permalink
Update README (#144)
Browse files Browse the repository at this point in the history
  • Loading branch information
odow authored Apr 5, 2023
1 parent 34977b0 commit 3358ee6
Showing 1 changed file with 66 additions and 30 deletions.
96 changes: 66 additions & 30 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,65 +1,101 @@
# COIN-OR Linear Programming Interface (Clp.jl)

![](https://www.coin-or.org/wordpress/wp-content/uploads/2014/08/COINOR.png)

# Clp.jl

[![Build Status](https://github.com/jump-dev/Clp.jl/workflows/CI/badge.svg?branch=master)](https://github.com/jump-dev/Clp.jl/actions?query=workflow%3ACI)
[![codecov](https://codecov.io/gh/jump-dev/Clp.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jump-dev/Clp.jl)

`Clp.jl` is a wrapper for the [COIN-OR Linear Programming](https://projects.coin-or.org/Clp)
solver.
[Clp.jl](https://github.com/jump-dev/Clp.jl) is a wrapper for the
[COIN-OR Linear Programming](https://projects.coin-or.org/Clp) solver.

The wrapper has two components:

* a thin wrapper around the complete C API
* an interface to [MathOptInterface](https://github.com/jump-dev/MathOptInterface.jl)

The C API can be accessed via `Clp.Clp_XXX` functions, where the names and
arguments are identical to the C API.
## Affiliation

This wrapper is maintained by the JuMP community and is not a COIN-OR project.

*Note: This wrapper is maintained by the JuMP community and is not a COIN-OR
project.*
## License

`Clp.jl` is licensed under the [MIT License](https://github.com/jump-dev/Clp.jl/blob/master/LICENSE.md).

The underlying solver, [coin-or/Clp](https://github.com/coin-or/Clp), is
licensed under the [Eclipse public license](https://github.com/coin-or/Clp/blob/master/LICENSE).

## Installation

Install Clp using `Pkg.add`:

```julia
import Pkg; Pkg.add("Clp")
import Pkg
Pkg.add("Clp")
```

In addition to installing the Clp.jl package, this will also download and
install the Clp binaries. (You do not need to isntall Clp separately.)
install the Clp binaries. You do not need to install Clp separately.

To use a custom binary, read the [Custom solver binaries](https://jump.dev/JuMP.jl/stable/developers/custom_solver_binaries/)
section of the JuMP documentation.

## Use with JuMP

To use Clp with [JuMP](https://github.com/jump-dev/JuMP.jl), use `Clp.Optimizer`:
To use Clp with JuMP, use `Clp.Optimizer`:
```julia
using JuMP, Clp

model = Model(Clp.Optimizer)
set_optimizer_attribute(model, "LogLevel", 1)
set_optimizer_attribute(model, "Algorithm", 4)
set_attribute(model, "LogLevel", 1)
set_attribute(model, "Algorithm", 4)
```

See the list of options below.
## MathOptInterface API

The Clp optimizer supports the following constraints and attributes.

List of supported objective functions:

* [`MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}`](@ref)

List of supported variable types:

* [`MOI.Reals`](@ref)

List of supported constraint types:

* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.EqualTo{Float64}`](@ref)
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.GreaterThan{Float64}`](@ref)
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.Interval{Float64}`](@ref)
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.LessThan{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.EqualTo{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.GreaterThan{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.Interval{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.LessThan{Float64}`](@ref)

List of supported model attributes:

* [`MOI.ObjectiveSense()`](@ref)

## Options

The following options are available to get/set via `JuMP.set_optimizer_attribute`
or `MOI.RawOptimizerAttribute`.
Options are, unfortunately, not well documented.

The following options are likely to be the most useful:

| Parameter | Default value | Description |
|:----------|:--------------|:----------|
| `PrimalTolerance` | `1e-7` | Primal feasibility tolerance |
| `DualTolerance` | `1e-7` | Dual feasibility tolerance |
| Parameter | Example | Explanation |
| -------------------- | ------- | ------------------------------------------- |
| `PrimalTolerance` | `1e-7` | Primal feasibility tolerance |
| `DualTolerance` | `1e-7` | Dual feasibility tolerance |
| `DualObjectiveLimit` | `1e308` | When using dual simplex (where the objective is monotonically changing), terminate when the objective exceeds this limit |
| `MaximumIterations` | `2147483647` | Terminate after performing this number of simplex iterations |
| `MaximumSeconds` | `-1.0` | Terminate after this many seconds have passed. A negative value means no time limit |
| `LogLevel` | `1` | Set to 1, 2, 3, or 4 for increasing output. Set to `0` to disable output |
| `PresolveType` | `0` | Set to 1 to disable presolve |
| `SolveType` | `5` | Solution method: dual simplex (`0`), primal simplex (`1`), sprint (`2`), barrier with crossover (`3`), barrier without crossover (`4`), automatic (`5`) |
| `InfeasibleReturn` | `0` | Set to 1 to return as soon as the problem is found to be infeasible (by default, an infeasibility proof is computed as well) |
| `Scaling` | `3` | `0` -off, `1` equilibrium, `2` geometric, `3` auto, `4` dynamic(later) |
| `Perturbation` | `100` | switch on perturbation (`50`), automatic (`100`), don't try perturbing (`102`) |
| `MaximumIterations` | `2147483647` | Terminate after performing this number of simplex iterations |
| `MaximumSeconds` | `-1.0` | Terminate after this many seconds have passed. A negative value means no time limit |
| `LogLevel` | `1` | Set to 1, 2, 3, or 4 for increasing output. Set to `0` to disable output |
| `PresolveType` | `0` | Set to `1` to disable presolve |
| `SolveType` | `5` | Solution method: dual simplex (`0`), primal simplex (`1`), sprint (`2`), barrier with crossover (`3`), barrier without crossover (`4`), automatic (`5`) |
| `InfeasibleReturn` | `0` | Set to 1 to return as soon as the problem is found to be infeasible (by default, an infeasibility proof is computed as well) |
| `Scaling` | `3` | `0` -off, `1` equilibrium, `2` geometric, `3` auto, `4` dynamic(later) |
| `Perturbation` | `100` | switch on perturbation (`50`), automatic (`100`), don't try perturbing (`102`) |

## C API

The C API can be accessed via `Clp.Clp_XXX` functions, where the names and
arguments are identical to the C API.

0 comments on commit 3358ee6

Please sign in to comment.