Skip to content

kaiqiangh/extracting-video-features-ResNeXt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

extracting-video-features-ResNeXt

Extracting video features from pre-trained ResNeXt model Credit: repo

Video Classification Using 3D ResNet

This is a pytorch code for video (action) classification using 3D ResNet trained by this code.
The 3D ResNet is trained on the Kinetics dataset, which includes 400 action classes.
This code uses videos as inputs and outputs class names and predicted class scores for each 16 frames in the score mode.
In the feature mode, this code outputs features of 512 dims (after global average pooling) for each 16 frames.

Torch (Lua) version of this code is available here.

Requirements

wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
tar xvf ffmpeg-release-64bit-static.tar.xz
cd ./ffmpeg-3.3.3-64bit-static/; sudo cp ffmpeg ffprobe /usr/local/bin;
  • Python 3

Preparation

  • Download this code.
  • Download the pretrained model.
    • ResNeXt-101 achieved the best performance in our experiments. (See paper in details.)

Usage

Assume input video files are located in ./videos.

To calculate class scores for each 16 frames, use --mode score.

python main.py --input ./input --video_root ./videos --output ./output.json --model ./resnet-34-kinetics.pth --mode score

To visualize the classification results, use generate_result_video/generate_result_video.py.

To calculate video features for each 16 frames, use --mode feature.

python main.py --input ./input --video_root ./videos --output ./output.json --model ./resnet-34-kinetics.pth --mode feature

Citation

If you use this code, please cite the following:

@article{hara3dcnns,
  author={Kensho Hara and Hirokatsu Kataoka and Yutaka Satoh},
  title={Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?},
  journal={arXiv preprint},
  volume={arXiv:1711.09577},
  year={2017},
}

Files needed

  1. hmdb51_ClassInd.txt

  2. hmdb51_input_filename

  3. ext_feat_hmdb51.sh

  4. change main.py at line 38 (change class index file when using new dataset)

  5. if change pre-trained model to 64f, check code "opt.sample_duration = 64", make sure value is 64

About

Extracting video features from pre-trained ResNeXt model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published