Extracting video features from pre-trained ResNeXt model Credit: repo
This is a pytorch code for video (action) classification using 3D ResNet trained by this code.
The 3D ResNet is trained on the Kinetics dataset, which includes 400 action classes.
This code uses videos as inputs and outputs class names and predicted class scores for each 16 frames in the score mode.
In the feature mode, this code outputs features of 512 dims (after global average pooling) for each 16 frames.
Torch (Lua) version of this code is available here.
-
FFmpeg, FFprobe
wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
tar xvf ffmpeg-release-64bit-static.tar.xz
cd ./ffmpeg-3.3.3-64bit-static/; sudo cp ffmpeg ffprobe /usr/local/bin;
- Python 3
- Download this code.
- Download the pretrained model.
- ResNeXt-101 achieved the best performance in our experiments. (See paper in details.)
Assume input video files are located in ./videos
.
To calculate class scores for each 16 frames, use --mode score
.
python main.py --input ./input --video_root ./videos --output ./output.json --model ./resnet-34-kinetics.pth --mode score
To visualize the classification results, use generate_result_video/generate_result_video.py
.
To calculate video features for each 16 frames, use --mode feature
.
python main.py --input ./input --video_root ./videos --output ./output.json --model ./resnet-34-kinetics.pth --mode feature
If you use this code, please cite the following:
@article{hara3dcnns,
author={Kensho Hara and Hirokatsu Kataoka and Yutaka Satoh},
title={Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?},
journal={arXiv preprint},
volume={arXiv:1711.09577},
year={2017},
}
-
hmdb51_ClassInd.txt
-
hmdb51_input_filename
-
ext_feat_hmdb51.sh
-
change main.py at line 38 (change class index file when using new dataset)
-
if change pre-trained model to 64f, check code "opt.sample_duration = 64", make sure value is 64