Skip to content

kangyiyang/yolov8_drone_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 

Repository files navigation

YOLOv8无人机检测与追踪

环境

  1. python:3.7
  2. torch:1.8.1+cu101

运行步骤

  1. 环境部署
    git clone https://github.com/kangyiyang/yolov8_drone_detection.git
  2. 下载数据集到datasets文件夹下,使用如下命令解压数据集,然后将无人机检测与追踪文件夹下的内容复制到orignal_data下并删除无人机检测与追踪文件夹
    7z x 无人机检测与追踪.7z
  3. 执行数据预处理,打开src下process.py文件,点击运行
  4. 使用yolo命令训练数据
    单卡:yolo task=detect mode=train model=yolov8n.pt data=datasets/config.yaml batch=32 epochs=20 imgsz=640 workers=16 device=0
    多卡:yolo task=detect mode=train model=yolov8n.pt data=datasets/config.yaml batch=32 epochs=20 imgsz=640 workers=16 device='0,1'
  5. 使用yolo命令验证数据
    yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=datasets/config.yaml device=0
  6. 使用yolo命令预测数据
    yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source=datasets/data/images/test device=0 save_txt=True
  7. 执行数据后处理,打开src下的postcess.py文件,点击运行

About

Drone Datasets Detection Using YOLOv8

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages