Skip to content

khalefa-phd/learned-indexes

Repository files navigation

Learned Indexes

The code is based from https://github.com/yangjufo/Learned-Indexes

Implementation of BTree part for paper 'The Case for Learned Index Structures'.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for Learned Index Structures. https://arxiv.org/abs/1712.01208, 2017

Language: Python
Support content: Integer values, Random and Exponential distribution

Files Structures

data/: test data
model/: learned NN model
perfromance/:NN and BTree performance
Learned_BTree.py: main file
Trained_NN.py: NN structures

HOW TO RUN

First, you need to install python2.7.x and package tensorflow, pandas, numpy, enum.
Second, use command to run the Learned_BTree.py fule, that is,
python Learned_BTree.py -t <Type> -d <Distribution> [-p|-n] [Percent]|[Number] [-c] [New data] [-h].

Parameters:
'type': 'Type: sample, full',
'distribution': 'Distribution: random, exponential',
'percent': 'Percent: 0.1-1.0, default value = 0.5; sample train data size = 300,000',
'number': 'Number: 10,000-10,000,000, default value = 300,000',
'new data' 'New Data: INTEGER, 0 for no creating new data file, others for creating'

Example:
python Learned_BTree.py -t full -d random -n 100000 -c 1

Other Content

Sample Training

Sample training is also included in this project, you can use parameter 'sample' for '-t' to test sample training, while '-p' is used for change the sample training percent.

Example:
python Learned_BTree.py -t sample -d random -p 0.3 -c 0

Storage Optimization

More Information will be added soon.

Stage Models

 Input: int threshold, int stages[]
 Data: record data[]
 Result: trained index
1 M = stages.size;
2 tmp_records[][];
3 tmp_records[1][1] = all_data;
4 for i ← 1 to M do
5   for j ← 1 to stages[i] do
6     index[i][j] = new NN trained on tmp.records[i][j];
7     if i < M then
8       for r ∈ tmp.records[i][j] do
9         𝑞 = f(r.key) / stages[i + 1];
10        tmp.records[i + 1][ 𝑞].add(r);
11 for j ← 1 to index[M].size do
12   index[M][j].calc_err(tmp.records[M][j]);
13   if index[M][j].max_abs_err > threshold then
14     index[M][j] = new B-Tree trained on tmp_records[M][j];
15 return index;

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages