forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add saving Protein to mmCIF file and reading Protein from mmCIF file.
PiperOrigin-RevId: 540873522 Change-Id: I502551e47df701cb39f72b380e9e4e818ea9c04c
- Loading branch information
1 parent
4bd3ff7
commit 6c4d833
Showing
10 changed files
with
11,071 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
# Copyright 2021 DeepMind Technologies Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""mmCIF metadata.""" | ||
|
||
from typing import Mapping, Sequence | ||
from alphafold import version | ||
import numpy as np | ||
|
||
|
||
_DISCLAIMER = """ALPHAFOLD DATA, COPYRIGHT (2021) DEEPMIND TECHNOLOGIES LIMITED. | ||
THE INFORMATION PROVIDED IS THEORETICAL MODELLING ONLY AND CAUTION SHOULD BE | ||
EXERCISED IN ITS USE. IT IS PROVIDED "AS-IS" WITHOUT ANY WARRANTY OF ANY KIND, | ||
WHETHER EXPRESSED OR IMPLIED. NO WARRANTY IS GIVEN THAT USE OF THE INFORMATION | ||
SHALL NOT INFRINGE THE RIGHTS OF ANY THIRD PARTY. DISCLAIMER: THE INFORMATION IS | ||
NOT INTENDED TO BE A SUBSTITUTE FOR PROFESSIONAL MEDICAL ADVICE, DIAGNOSIS, OR | ||
TREATMENT, AND DOES NOT CONSTITUTE MEDICAL OR OTHER PROFESSIONAL ADVICE. IT IS | ||
AVAILABLE FOR ACADEMIC AND COMMERCIAL PURPOSES, UNDER CC-BY 4.0 LICENCE.""" | ||
|
||
# Authors of the Nature methods paper we reference in the mmCIF. | ||
_MMCIF_PAPER_AUTHORS = ( | ||
'Jumper, John', | ||
'Evans, Richard', | ||
'Pritzel, Alexander', | ||
'Green, Tim', | ||
'Figurnov, Michael', | ||
'Ronneberger, Olaf', | ||
'Tunyasuvunakool, Kathryn', | ||
'Bates, Russ', | ||
'Zidek, Augustin', | ||
'Potapenko, Anna', | ||
'Bridgland, Alex', | ||
'Meyer, Clemens', | ||
'Kohl, Simon A. A.', | ||
'Ballard, Andrew J.', | ||
'Cowie, Andrew', | ||
'Romera-Paredes, Bernardino', | ||
'Nikolov, Stanislav', | ||
'Jain, Rishub', | ||
'Adler, Jonas', | ||
'Back, Trevor', | ||
'Petersen, Stig', | ||
'Reiman, David', | ||
'Clancy, Ellen', | ||
'Zielinski, Michal', | ||
'Steinegger, Martin', | ||
'Pacholska, Michalina', | ||
'Berghammer, Tamas', | ||
'Silver, David', | ||
'Vinyals, Oriol', | ||
'Senior, Andrew W.', | ||
'Kavukcuoglu, Koray', | ||
'Kohli, Pushmeet', | ||
'Hassabis, Demis', | ||
) | ||
|
||
# Authors of the mmCIF - we set them to be equal to the authors of the paper. | ||
_MMCIF_AUTHORS = _MMCIF_PAPER_AUTHORS | ||
|
||
|
||
def add_metadata_to_mmcif( | ||
old_cif: Mapping[str, Sequence[str]], model_type: str | ||
) -> Mapping[str, Sequence[str]]: | ||
"""Adds AlphaFold metadata in the given mmCIF.""" | ||
cif = {} | ||
|
||
# ModelCIF conformation dictionary. | ||
cif['_audit_conform.dict_name'] = ['mmcif_ma.dic'] | ||
cif['_audit_conform.dict_version'] = ['1.3.9'] | ||
cif['_audit_conform.dict_location'] = [ | ||
'https://raw.githubusercontent.com/ihmwg/ModelCIF/master/dist/' | ||
'mmcif_ma.dic' | ||
] | ||
|
||
# License and disclaimer. | ||
cif['_pdbx_data_usage.id'] = ['1', '2'] | ||
cif['_pdbx_data_usage.type'] = ['license', 'disclaimer'] | ||
cif['_pdbx_data_usage.details'] = [ | ||
'Data in this file is available under a CC-BY-4.0 license.', | ||
_DISCLAIMER, | ||
] | ||
cif['_pdbx_data_usage.url'] = [ | ||
'https://creativecommons.org/licenses/by/4.0/', | ||
'?', | ||
] | ||
cif['_pdbx_data_usage.name'] = ['CC-BY-4.0', '?'] | ||
|
||
# Structure author details. | ||
cif['_audit_author.name'] = [] | ||
cif['_audit_author.pdbx_ordinal'] = [] | ||
for author_index, author_name in enumerate(_MMCIF_AUTHORS, start=1): | ||
cif['_audit_author.name'].append(author_name) | ||
cif['_audit_author.pdbx_ordinal'].append(str(author_index)) | ||
|
||
# Paper author details. | ||
cif['_citation_author.citation_id'] = [] | ||
cif['_citation_author.name'] = [] | ||
cif['_citation_author.ordinal'] = [] | ||
for author_index, author_name in enumerate(_MMCIF_PAPER_AUTHORS, start=1): | ||
cif['_citation_author.citation_id'].append('primary') | ||
cif['_citation_author.name'].append(author_name) | ||
cif['_citation_author.ordinal'].append(str(author_index)) | ||
|
||
# Paper citation details. | ||
cif['_citation.id'] = ['primary'] | ||
cif['_citation.title'] = [ | ||
'Highly accurate protein structure prediction with AlphaFold' | ||
] | ||
cif['_citation.journal_full'] = ['Nature'] | ||
cif['_citation.journal_volume'] = ['596'] | ||
cif['_citation.page_first'] = ['583'] | ||
cif['_citation.page_last'] = ['589'] | ||
cif['_citation.year'] = ['2021'] | ||
cif['_citation.journal_id_ASTM'] = ['NATUAS'] | ||
cif['_citation.country'] = ['UK'] | ||
cif['_citation.journal_id_ISSN'] = ['0028-0836'] | ||
cif['_citation.journal_id_CSD'] = ['0006'] | ||
cif['_citation.book_publisher'] = ['?'] | ||
cif['_citation.pdbx_database_id_PubMed'] = ['34265844'] | ||
cif['_citation.pdbx_database_id_DOI'] = ['10.1038/s41586-021-03819-2'] | ||
|
||
# Type of data in the dataset including data used in the model generation. | ||
cif['_ma_data.id'] = ['1'] | ||
cif['_ma_data.name'] = ['Model'] | ||
cif['_ma_data.content_type'] = ['model coordinates'] | ||
|
||
# Description of number of instances for each entity. | ||
cif['_ma_target_entity_instance.asym_id'] = old_cif['_struct_asym.id'] | ||
cif['_ma_target_entity_instance.entity_id'] = old_cif[ | ||
'_struct_asym.entity_id' | ||
] | ||
cif['_ma_target_entity_instance.details'] = ['.'] * len( | ||
cif['_ma_target_entity_instance.entity_id'] | ||
) | ||
|
||
# Details about the target entities. | ||
cif['_ma_target_entity.entity_id'] = cif[ | ||
'_ma_target_entity_instance.entity_id' | ||
] | ||
cif['_ma_target_entity.data_id'] = ['1'] * len( | ||
cif['_ma_target_entity.entity_id'] | ||
) | ||
cif['_ma_target_entity.origin'] = ['.'] * len( | ||
cif['_ma_target_entity.entity_id'] | ||
) | ||
|
||
# Details of the models being deposited. | ||
cif['_ma_model_list.ordinal_id'] = ['1'] | ||
cif['_ma_model_list.model_id'] = ['1'] | ||
cif['_ma_model_list.model_group_id'] = ['1'] | ||
cif['_ma_model_list.model_name'] = ['Top ranked model'] | ||
|
||
cif['_ma_model_list.model_group_name'] = [ | ||
f'AlphaFold {model_type} v{version.__version__} model' | ||
] | ||
cif['_ma_model_list.data_id'] = ['1'] | ||
cif['_ma_model_list.model_type'] = ['Ab initio model'] | ||
|
||
# Software used. | ||
cif['_software.pdbx_ordinal'] = ['1'] | ||
cif['_software.name'] = ['AlphaFold'] | ||
cif['_software.version'] = [f'v{version.__version__}'] | ||
cif['_software.type'] = ['package'] | ||
cif['_software.description'] = ['Structure prediction'] | ||
cif['_software.classification'] = ['other'] | ||
cif['_software.date'] = ['?'] | ||
|
||
# Collection of software into groups. | ||
cif['_ma_software_group.ordinal_id'] = ['1'] | ||
cif['_ma_software_group.group_id'] = ['1'] | ||
cif['_ma_software_group.software_id'] = ['1'] | ||
|
||
# Method description to conform with ModelCIF. | ||
cif['_ma_protocol_step.ordinal_id'] = ['1', '2', '3'] | ||
cif['_ma_protocol_step.protocol_id'] = ['1', '1', '1'] | ||
cif['_ma_protocol_step.step_id'] = ['1', '2', '3'] | ||
cif['_ma_protocol_step.method_type'] = [ | ||
'coevolution MSA', | ||
'template search', | ||
'modeling', | ||
] | ||
|
||
# Details of the metrics use to assess model confidence. | ||
cif['_ma_qa_metric.id'] = ['1', '2'] | ||
cif['_ma_qa_metric.name'] = ['pLDDT', 'pLDDT'] | ||
# Accepted values are distance, energy, normalised score, other, zscore. | ||
cif['_ma_qa_metric.type'] = ['pLDDT', 'pLDDT'] | ||
cif['_ma_qa_metric.mode'] = ['global', 'local'] | ||
cif['_ma_qa_metric.software_group_id'] = ['1', '1'] | ||
|
||
# Global model confidence metric value. | ||
cif['_ma_qa_metric_global.ordinal_id'] = ['1'] | ||
cif['_ma_qa_metric_global.model_id'] = ['1'] | ||
cif['_ma_qa_metric_global.metric_id'] = ['1'] | ||
global_plddt = np.mean( | ||
[float(v) for v in old_cif['_atom_site.B_iso_or_equiv']] | ||
) | ||
cif['_ma_qa_metric_global.metric_value'] = [f'{global_plddt:.2f}'] | ||
|
||
cif['_atom_type.symbol'] = sorted(set(old_cif['_atom_site.type_symbol'])) | ||
|
||
return cif |
Oops, something went wrong.