-
Notifications
You must be signed in to change notification settings - Fork 86
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
constrained formulation of the Stokes problem
- Loading branch information
Showing
1 changed file
with
83 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
r"""Stokes problem by minimization | ||
This redoes Example 30 using scipy.optimize.minimize, as in ./ex01_minimize.py. | ||
Based on the 'constraint formulation of the Stokes problem' (Ern & Guermond 2004, | ||
§4.1.3), it suffices to minimize the viscous dissipation subject to the | ||
constraint that the velocity field have no divergence. | ||
.. [ERN-GUERMOND] | ||
""" | ||
from skfem import * | ||
from skfem.models.poisson import vector_laplace, laplace, mass | ||
from skfem.models.general import divergence, rot | ||
|
||
import numpy as np | ||
from scipy.optimize import LinearConstraint, minimize | ||
from scipy.sparse import csr_matrix | ||
from scipy.sparse.linalg import LinearOperator, minres | ||
|
||
mesh = MeshQuad.init_tensor(*(np.linspace(-.5, .5, 2**6),)*2) | ||
element = {'u': ElementVectorH1(ElementQuad2()), | ||
'p': ElementQuad1()} | ||
basis = {variable: InteriorBasis(mesh, e, intorder=3) | ||
for variable, e in element.items()} | ||
|
||
|
||
@LinearForm | ||
def body_force(v, w): | ||
return w.x[0] * v.value[1] | ||
|
||
|
||
A = asm(vector_laplace, basis['u']) | ||
B = -asm(divergence, basis['u'], basis['p']) | ||
f = asm(body_force, basis['u']) | ||
D = basis['u'].find_dofs()['all'].all() | ||
|
||
|
||
def functional(u: np.ndarray) -> float: | ||
return u @ A @ u / 2 - f @ u | ||
|
||
|
||
def jacobian(u: np.ndarray) -> np.ndarray: | ||
return u @ A - f | ||
|
||
|
||
def hessian(u: np.ndarray) -> np.ndarray: | ||
return A | ||
|
||
|
||
incompressibility = LinearConstraint(B, 0, 0) | ||
slip = csr_matrix((np.ones(D.size), (np.arange(D.size), D)), (D.size, basis["u"].N)) | ||
noslip = LinearConstraint(slip, 0, 0) | ||
|
||
velocity = minimize( | ||
functional, | ||
basis["u"].zeros(), | ||
jac=jacobian, | ||
hess=hessian, | ||
method="trust-constr", | ||
constraints=[incompressibility, noslip], | ||
options={"verbose": 3}, | ||
).x | ||
|
||
basis['psi'] = basis['u'].with_element(ElementQuad2()) | ||
vorticity = asm(rot, basis['psi'], w=basis['u'].interpolate(velocity)) | ||
psi = solve(*condense(asm(laplace, basis['psi']), vorticity, D=basis['psi'].find_dofs())) | ||
psi0 = (basis['psi'].probes(np.zeros((2, 1))) @ psi)[0] | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
from pathlib import Path | ||
|
||
from matplotlib.tri import Triangulation | ||
from skfem.visuals.matplotlib import draw | ||
|
||
print(psi0) | ||
|
||
ax = draw(mesh) | ||
ax.tricontour(Triangulation(*mesh.p, mesh.to_meshtri().t.T), | ||
psi[basis['psi'].nodal_dofs.flatten()]) | ||
ax.get_figure().savefig(Path(__file__).with_suffix(".png")) |