OpenSoundscape (OPSO) is free and open source Python utility library analyzing bioacoustic data.
OpenSoundscape includes utilities which can be strung together to create data analysis pipelines, including functions to:
- load and manipulate audio files
- create and manipulate spectrograms
- train deep learning models to recognize sounds
- run pre-trained CNNs to detect vocalizations
- tune pre-trained CNNs to custom classification tasks
- detect periodic vocalizations with RIBBIT
- load and manipulate Raven annotations
- estimate the location of sound sources from synchronized recordings
OpenSoundscape's documentation can be found on OpenSoundscape.org.
For examples of how to use OpenSoundscape, see the Quick Start Guide below.
For full API documentation and tutorials on how to use OpenSoundscape to work with audio and spectrograms, train machine learning models, apply trained machine learning models to acoustic data, and detect periodic vocalizations using RIBBIT, see the documentation.
OpenSoundcape is developed and maintained by the Kitzes Lab at the University of Pittsburgh. It is currently in active development. If you find a bug, please submit an issue on the GitHub repository. If you have another question about OpenSoundscape, please use the (OpenSoundscape Discussions board)[https://github.com/kitzeslab/opensoundscape/discussions] or email Sam Lapp (sam.lapp at pitt.edu
)
Suggested citation:
Lapp, Sam; Rhinehart, Tessa; Freeland-Haynes, Louis;
Khilnani, Jatin; Syunkova, Alexandra; Kitzes, Justin.
“OpenSoundscape: An Open-Source Bioacoustics Analysis Package for Python.”
Methods in Ecology and Evolution 2023. https://doi.org/10.1111/2041-210X.14196.
A guide to the most commonly used features of OpenSoundscape.
Details about installation are available on the OpenSoundscape documentation at OpenSoundscape.org. FAQs:
- Most users should install OpenSoundscape via pip, preferably within a virtual environment:
pip install opensoundscape==0.11.0
. - To use OpenSoundscape in Jupyter Notebooks (e.g. for tutorials), follow the installation instructions for your operating system, then follow the "Jupyter" instructions.
- Contributors and advanced users can also use Poetry to install OpenSoundscape using the "Contributor" instructions
- OpenSoundscape can be installed on Windows, Mac, and Linux machines.
- It has been tested on Python 3.9, 3.10, and 3.11.
- For Apple Silicon (M1 chip) users, Python >=3.9 is recommended and may be required to avoid dependency issues.
- Most computer cluster users should follow the Linux installation instructions
from opensoundscape import Audio, Spectrogram
#load an audio file and trim out a 5 second clip
my_audio = Audio.from_file("/path/to/audio.wav")
clip_5s = my_audio.trim(0,5)
#create a spectrogram and plot it
my_spec = Spectrogram.from_audio(clip_5s)
my_spec.plot()
from datetime import datetime; import pytz
start_time = pytz.timezone('UTC').localize(datetime(2020,4,4,10,25))
audio_length = 5 #seconds
path = '/path/to/audiomoth_file.WAV' #an AudioMoth recording
Audio.from_file(path, start_timestamp=start_time,duration=audio_length)
The Bioacoustics Model Zoo hosts models in a respository that can be accessed via torch.hub
and are compatible with OpenSoundscape. Load up a model and apply it to your own audio right away:
from opensoundscape.ml import bioacoustics_model_zoo as bmz
#list available models
print(bmz.list_models())
#generate class predictions and embedding vectors with Perch
perch = bmz.load("Perch")
scores = perch.predict(files)
embeddings = perch.generate_embeddings(files)
#...or BirdNET
birdnet = bmz.load("BirdNET")
scores = birdnet.predict(files)
embeddings = birdnet.generate_embeddings(files)
from opensoundscape import load_model
#get list of audio files
files = glob('./dir/*.WAV')
#generate predictions with a model
model = load_model('/path/to/saved.model')
scores = model.predict(files)
#scores is a dataframe with MultiIndex: file, start_time, end_time
#containing inference scores for each class and each audio window
from sklearn.model_selection import train_test_split
from opensoundscape import BoxedAnnotations, CNN
# assume we have a list of raven annotation files and corresponding audio files
# load the annotations into OpenSoundscape
all_annotations = BoxedAnnotations.from_raven_files(raven_file_paths,audio_file_paths)
# pick classes to train the model on. These should occur in the annotated data
class_list = ['IBWO','BLJA']
# create labels for fixed-duration (2 second) clips
labels = all_annotations.clip_labels(
cip_duration=2,
clip_overlap=0,
min_label_overlap=0.25,
class_subset=class_list
)
# split the labels into training and validation sets
train_df, validation_df = train_test_split(labels, test_size=0.3)
# create a CNN and train on the labeled data
model = CNN(architecture='resnet18', sample_duration=2, classes=class_list)
# train the model to recognize the classes of interest in audio data
model.train(train_df, validation_df, epochs=20, num_workers=8, batch_size=256)
from opensoundscape.ml import bioacoustics_model_zoo as bmz
# load a model from the model zoo
model = bmz.load('BirdNET') #or bmz.load('Perch')
# define classes for your custom classifier
model.change_classes(train_df.columns)
# fit the trainable PyTorch classifier on your labels
model.train(train_df,val_df,num_augmentation_variants=4,batch_size=64)
# run inference using your custom classifier on audio data
model.predict(audio_files)