├── basic
│ ├── heap.cc
│ └── sortings.cc
├── bit_span.cc
├── bitwise.cc
├── dp
│ ├── convex_hull_optimization.cc
│ ├── longest_arithmetic_series.cc
│ ├── quadrangle_optimization.cc
│ └── single_cycle_tree.cc
├── ds
│ ├── dsu.cc # union-find set
│ ├── dsu_pst.cc # persistent union-find set, implemented by persistent segment tree
│ ├── dsu_rope.cc # persistent union-find set, implemented by rope, slower
│ ├── exact_cover.cc # X problem and dancing links
│ ├── fenwick_tree # binary indexed trees
│ │ ├── fenwick2d.cc
│ │ ├── fenwick.cc
│ │ ├── range_fenwick2d.cc
│ │ ├── range_fenwick.cc
│ │ ├── range_single_fenwick2d.cc
│ │ └── range_single_fenwick.cc
│ ├── implicit_treap.cc # treap with implicit key
│ ├── matrix.cc # multiplication and power of matrix
│ ├── persistent_array.cc
│ ├── ptreap.cc # persistent treap
│ ├── rope.cc # demo code for rope data structure
│ ├── segment_tree
│ │ ├── range_cover.cc
│ │ ├── range_pst.cc # persistent segment tree, with range modification
│ │ ├── range_st.cc
│ │ ├── single_pst.cc # persistent segment tree, single point modification
│ │ └── single_st.cc
│ ├── sparse_table.cc
│ └── treap.cc
├── flows
│ ├── max_flow.cc
│ └── min_cost_flow.cc
├── geometry.cc
├── graphs
│ ├── bcc_edge.cc # binary connected component, by edge
│ ├── bcc_vertex.cc # binary connected component, by vertex
│ ├── dominator_tree.cc # "dominator" tree of directed graph
│ ├── maximum_clique.cc # can also solve maximum-independent set
│ ├── scc.cc # strong connected component of directed graph
│ └── topo_sort.cc # topo sort of (un)directed graph
├── inverse_pair.cc # number of inverse pairs, by merge sort
├── matchings
│ └── hungary.cc # hungary matching of bipartite graph
├── math
│ ├── combine_big.cc # combination for large N by Lucas
│ ├── combine_log.cc # combination with O(N) preprocessing and O(log N) computation
│ ├── combine_small.cc # combination with O(N^2) preprocessing and O(1) computation
│ ├── crt.cc # Chinese remainder theorem solving congruence equation
│ ├── d_func.cc # calculate the number of divisors of a number by O(sqrt(N))
│ ├── euler_sieve.cc # O(N) sieve for prime numbers, euler function and lowest prime divisor
│ ├── exgcd.cc # extended gcd, and solution for ax + by = c
│ ├── fft.cc # normal fft for floating numbers
│ ├── fft_mod.cc # fft for arbitrary moduler
│ ├── inv_n.cc # moduler inverse precaculation O(N)
│ ├── josephus.cc # josephus cycle problem
│ ├── kth_fib.cc # find k-th fibonacci number by O(log N)
│ ├── lagrange.cc # lagrange sieve O(N^2)
│ ├── mu_n.cc # O(N) sieve for mu array
│ ├── newton_sqrt_root.cc # newton's method for calculation sqrt
│ ├── ntt.cc # number theory transform (moduler fft)
│ ├── number_divide.cc # the number of ways to divide a positive integer number to sum of smaller numbers
│ ├── phi_func.cc # calculate euler function by O(sqrt(N))
│ ├── phi_n.cc # precaculate euler function array by O(N)
│ ├── polynomial_inv.cc # moduler inverse of polynomial
│ ├── primality.cc # primality check, miller-robin and pollard-rho
│ ├── prime_n.cc # O(N) sieve for prime numbers
│ ├── s_func.cc # calculate sum of divisors of a number by O(sqrt(N))
│ └── young_tableaus.cc
├── partial_order.cc # divide-and-conquer solving partial order problems
├── strings
│ ├── aho_corasick.cc # aho-corasick automaton
│ ├── bkdr_hash.cc
│ ├── expression.cc # math equation evaluation
│ ├── hash_1.cc # hashing a string with one prime moduler
│ ├── hash_2.cc # hashing a string with two prime modulers
│ ├── manacher.cc # manacher palindrome O(N)
│ ├── p_function.cc # prefix function, kmp
│ ├── p_trie.cc # persistent trie
│ ├── sa.cc # suffix array
│ ├── suffix_automaton.cc
│ ├── trie.cc
│ ├── weight_hash.cc # hashing a multiset by weight
│ └── z_function.cc # suffix function (extended kmp)
└── trees
├── centroid.cc # centroid decomposition (divide and conquer)
└── hld.cc # heavy-light decomposition
-
Notifications
You must be signed in to change notification settings - Fork 0
kongroo/acm
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
competitive programming templates
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published