forked from BMCV/galaxy-image-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
68 additions
and
65 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,75 +1,39 @@ | ||
""" | ||
Copyright (c) 2017-2024 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University | ||
import argparse | ||
|
||
Distributed under the MIT license. | ||
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | ||
import superdsm.io | ||
import superdsm.render | ||
|
||
Originally implemented in: | ||
https://github.com/BMCV/SuperDSM/blob/master/superdsm/render.py | ||
""" | ||
|
||
import numpy as np | ||
def _parse_hex_part(hex_part): | ||
return int(f'0x{hex_part}') | ||
|
||
|
||
def shuffle_labels(labels, bg_label=None, seed=None): | ||
""" | ||
Randomly shuffles the values of an integer-valued image. | ||
def color_hex_to_rgb_tuple(hex): | ||
if hex.startswith('#'): | ||
hex = hex[1:] | ||
return ( | ||
_parse_hex_part(hex[0:2]), | ||
_parse_hex_part(hex[2:4]), | ||
_parse_hex_part(hex[4:6]), | ||
) | ||
|
||
:param labels: | ||
An object of type ``numpy.ndarray`` corresponding to labeled segmentation masks. | ||
|
||
:param bg_label: | ||
If not ``None``, then this label stays fixed. | ||
if __name__ == '__main__': | ||
|
||
:param seed: | ||
The seed used for randomization. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('input', type=str) | ||
parser.add_argument('bg_label', type=int) | ||
parser.add_argument('bg_color', type=str) | ||
parser.add_argument('cmap', type=str, default='gist_rainbow') | ||
parser.add_argument('seed', type=int) | ||
args = parser.parse_args() | ||
|
||
:return: | ||
An object of type ``numpy.ndarray`` corresponding to ``labels`` with shuffled values (labels). | ||
""" | ||
label_values0 = frozenset(labels.flatten()) | ||
if bg_label is not None: label_values0 -= {bg_label} | ||
label_values0 = list(label_values0) | ||
if seed is not None: np.random.seed(seed) | ||
label_values1 = np.asarray(label_values0).copy() | ||
np.random.shuffle(label_values1) | ||
label_map = dict(zip(label_values0, label_values1)) | ||
result = np.zeros_like(labels) | ||
for l in label_map.keys(): | ||
cc = (labels == l) | ||
result[cc] = label_map[l] | ||
return result | ||
im = superdsm.io.imread(args.input) | ||
|
||
|
||
def colorize_labels(labels, bg_label=0, cmap='gist_rainbow', bg_color=(0,0,0), shuffle=None): | ||
""" | ||
Returns a colorized representation of an integer-valued image. | ||
:param labels: | ||
An object of type ``numpy.ndarray`` corresponding to labeled segmentation masks. | ||
:param bg_label: | ||
Image areas with this label are forced to the color ``bg_color``. | ||
:param cmap: | ||
The colormap used to colorize the remaining labels (see `the list <https://matplotlib.org/stable/tutorials/colors/colormaps.html>`_). | ||
:param bg_color: | ||
The color used to represent the image regions with label ``bg_label`` (RGB). | ||
:param shuffle: | ||
If not ``None``, then used as ``seed`` to shuffle the labels before colorization, and not used otherwise. | ||
:return: | ||
An object of type ``numpy.ndarray`` corresponding to an RGB image. | ||
""" | ||
if shuffle is not None: | ||
labels = shuffle_labels(labels, bg_label=bg_label, seed=shuffle) | ||
if isinstance(cmap, str): | ||
cmap = plt.get_cmap(cmap) | ||
img = cmap((labels - labels.min()) / float(labels.max() - labels.min())) | ||
if img.shape[2] > 3: img = img[:,:,:3] | ||
if bg_label is not None: | ||
bg = (labels == bg_label) | ||
img[bg] = np.asarray(bg_color)[None, None, :] | ||
return img | ||
superdsm.render.colorize_labels( | ||
labels=im, | ||
bg_label=args.bg_label, | ||
cmap=args.cmap, | ||
bg_color=color_hex_to_rgb_tuple(args.bg_color), | ||
shuffle=args.seed, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
<tool id="colorize_labels" name="Colorize label map" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> | ||
<description>with SuperDSM</description> | ||
<macros> | ||
<token name="@TOOL_VERSION@">0.2.0</token> | ||
<token name="@VERSION_SUFFIX@">0</token> | ||
</macros> | ||
<edam_operations> | ||
<edam_operation>operation_3443</edam_operation> | ||
</edam_operations> | ||
<xrefs> | ||
<xref type="bio.tools">superdsm</xref> | ||
<xref type="biii">superdsm</xref> | ||
</xrefs> | ||
<requirements> | ||
<requirement type="package" version="0.2.0">superdsm</requirement> | ||
</requirements> | ||
<inputs> | ||
<param name="input" type="data" format="tiff,png" label="Input image (label map)" /> | ||
<param name="method_id" type="select" label="Thresholding method"> | ||
<option value="manual">Manual</option> | ||
<option value="otsu" selected="True">Globally adaptive / Otsu</option> | ||
<option value="li">Globally adaptive / Li's Minimum Cross Entropy</option> | ||
<option value="isodata">Globally adaptive / Isodata</option> | ||
<option value="yen">Globally adaptive / Yen</option> | ||
<option value="loc_gaussian">Locally adaptive / Gaussian</option> | ||
<option value="loc_median">Locally adaptive / Median</option> | ||
<option value="loc_mean">Locally adaptive / Mean</option> | ||
</param> | ||
</inputs> | ||
<outputs> | ||
<data format="png" name="output" from_work_dir="out.png" /> | ||
</outputs> | ||
<help> | ||
Colorize label map for visualization. | ||
</help> | ||
<citations> | ||
<citation type="doi">10.1109/TPAMI.2022.3185583</citation> | ||
</citations> | ||
</tool> |