Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: iteration & recursion in Zig #804

Merged
merged 6 commits into from
Oct 24, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions codes/zig/chapter_computational_complexity/iteration.zig
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
// File: iteration.zig
// Created Time: 2023-09-27
// Author: QiLOL ([email protected])

const std = @import("std");
const Allocator = std.mem.Allocator;

// for 循环
fn forLoop(n: usize) i32 {
var res: i32 = 0;
// 循环求和 1, 2, ..., n-1, n
for (1..n+1) |i| {
res = res + @as(i32, @intCast(i));
}
return res;
}

// while 循环
fn whileLoop(n: i32) i32 {
var res: i32 = 0;
var i: i32 = 1; // 初始化条件变量
// 循环求和 1, 2, ..., n-1, n
while (i <= n) {
res += @intCast(i);
i += 1;
}
return res;
}

// while 循环(两次更新)
fn whileLoopII(n: i32) i32 {
var res: i32 = 0;
var i: i32 = 1; // 初始化条件变量
// 循环求和 1, 4, ...
while (i <= n) {
res += @intCast(i);
// 更新条件变量
i += 1;
i *= 2;
}
return res;
}

// 双层 for 循环
fn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 {
var res = std.ArrayList(u8).init(allocator);
defer res.deinit();
var buffer: [20]u8 = undefined;
// 循环 i = 1, 2, ..., n-1, n
for (1..n+1) |i| {
// 循环 j = 1, 2, ..., n-1, n
for (1..n+1) |j| {
var _str = try std.fmt.bufPrint(&buffer, "({d}, {d}), ", .{i, j});
try res.appendSlice(_str);
}
}
return res.toOwnedSlice();
}


pub fn main() !void {
const n: i32 = 5;
var res: i32 = 0;

res = forLoop(n);
std.debug.print("\nfor 循环的求和结果 res = {}\n", .{res});

res = whileLoop(n);
std.debug.print("\nwhile 循环的求和结果 res = {}\n", .{res});

res = whileLoopII(n);
std.debug.print("\nwhile 循环(两次更新)求和结果 res = {}\n", .{res});

const allocator = std.heap.page_allocator;
const resStr = try nestedForLoop(allocator, n);
std.debug.print("\n双层 for 循环的遍历结果 {s}\n", .{resStr});
}
77 changes: 77 additions & 0 deletions codes/zig/chapter_computational_complexity/recursion.zig
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
// File: recursion.zig
// Created Time: 2023-09-27
// Author: QiLOL ([email protected])

const std = @import("std");

// 递归函数
fn recur(n: i32) i32 {
// 终止条件
if (n == 1) {
return 1;
}
// 递:递归调用
var res: i32 = recur(n - 1);
// 归:返回结果
return n + res;
}

// 使用迭代模拟递归
fn forLoopRecur(comptime n: i32) i32 {
// 使用一个显式的栈来模拟系统调用栈
var stack: [n]i32 = undefined;
var res: i32 = 0;
// 递:递归调用
var i: usize = n;
while (i > 0) {
stack[i - 1] = @intCast(i);
i -= 1;
}
// 归:返回结果
var index: usize = n;
while (index > 0) {
index -= 1;
res += stack[index];
}
// res = 1+2+3+...+n
return res;
}

// 尾递归函数
fn tailRecur(n: i32, res: i32) i32 {
// 终止条件
if (n == 0) {
return res;
}
// 尾递归调用
return tailRecur(n - 1, res + n);
}

// 斐波那契数列
fn fib(n: i32) i32 {
// 终止条件 f(1) = 0, f(2) = 1
if (n == 1 or n == 2) {
return n - 1;
}
// 递归调用 f(n) = f(n-1) + f(n-2)
var res: i32 = fib(n - 1) + fib(n - 2);
// 返回结果 f(n)
return res;
}

pub fn main() !void {
const n: i32 = 5;
var res: i32 = 0;

res = recur(n);
std.debug.print("\n递归函数的求和结果 res = {}\n", .{recur(n)});

res = forLoopRecur(n);
std.debug.print("\n使用迭代模拟递归的求和结果 res = {}\n", .{forLoopRecur(n)});

res = tailRecur(n, 0);
std.debug.print("\n尾递归函数的求和结果 res = {}\n", .{tailRecur(n, 0)});

res = fib(n);
std.debug.print("\n斐波那契数列的第 {} 项为 {}\n", .{n, fib(n)});
}
55 changes: 52 additions & 3 deletions docs/chapter_computational_complexity/time_complexity.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,16 @@
=== "Zig"

```zig title=""

// 在某运行平台下
fn algorithm(n: usize) void {
var a: i32 = 2; // 1 ns
a += 1; // 1 ns
a *= 2; // 10 ns
// 循环 n 次
for (0..n) |_| { // 1 ns
std.debug.print("{}\n", .{0}); // 5 ns
}
}
```

根据以上方法,可以得到算法运行时间为 $6n + 12$ ns :
Expand Down Expand Up @@ -423,7 +432,24 @@ $$
=== "Zig"

```zig title=""

// 算法 A 的时间复杂度:常数阶
fn algorithm_A(n: usize) void {
_ = n;
std.debug.print("{}\n", .{0});
}
// 算法 B 的时间复杂度:线性阶
fn algorithm_B(n: i32) void {
for (0..n) |_| {
std.debug.print("{}\n", .{0});
}
}
// 算法 C 的时间复杂度:常数阶
fn algorithm_C(n: i32) void {
_ = n;
for (0..1000000) |_| {
std.debug.print("{}\n", .{0});
}
}
```

下图展示了以上三个算法函数的时间复杂度。
Expand Down Expand Up @@ -600,7 +626,15 @@ $$
=== "Zig"

```zig title=""

fn algorithm(n: usize) void {
var a: i32 = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for (0..n) |_| { // +1(每轮都执行 i ++)
std.debug.print("{}\n", .{0}); // +1
}
}
```

设算法的操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以上函数的的操作数量为:
Expand Down Expand Up @@ -849,7 +883,22 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
=== "Zig"

```zig title=""
fn algorithm(n: usize) void {
var a: i32 = 1; // +0(技巧 1)
a = a + @as(i32, @intCast(n)); // +0(技巧 1)

// +n(技巧 2)
for(0..(5 * n + 1)) |_| {
std.debug.print("{}\n", .{0});
}

// +n*n(技巧 3)
for(0..(2 * n)) |_| {
for(0..(n + 1)) |_| {
std.debug.print("{}\n", .{0});
}
}
}
```

以下公式展示了使用上述技巧前后的统计结果,两者推出的时间复杂度都为 $O(n^2)$ 。
Expand Down