Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

QuaternionFilter Unstable q values #421

Closed
beaumr2 opened this issue Jun 12, 2020 · 93 comments
Closed

QuaternionFilter Unstable q values #421

beaumr2 opened this issue Jun 12, 2020 · 93 comments

Comments

@beaumr2
Copy link

beaumr2 commented Jun 12, 2020

Hi Kris

First of all, thank you for this.

So I'm using your code and having trouble with the QuaternionFilter. The accelerometer, gyroscope, and magnetometer values are stable but my q values vary wildly (and seem to want to alternate between positive and negative) which is messing up my pitch, roll, and yaw.

Do you have any idea what might be causing this? I'm using Arduino Uno and your code. I can paste the code if needed but here's the output:

x-axis self test: acceleration trim within : 0.7% of factory value
y-axis self test: acceleration trim within : -0.5% of factory value
z-axis self test: acceleration trim within : 2.3% of factory value
x-axis self test: gyration trim within : 34.6% of factory value
y-axis self test: gyration trim within : 14.5% of factory value
z-axis self test: gyration trim within : 0.8% of factory value
accel biases (mg)
-318.97
370.91
-494.32
gyro biases (dps)
-4.59
-9.87
-0.75
MPU9250 initialized for active data mode....
AK8963 I AM 48 I should be 48
AK8963 initialized for active data mode....
AK8963 mag biases (mG)
71.04
122.43
-36.90
AK8963 mag scale (mG)
1.01
1.03
0.96
Calibration values:
X-Axis sensitivity adjustment value 1.16
Y-Axis sensitivity adjustment value 1.17
Z-Axis sensitivity adjustment value 1.13

ax = 0.73 ay = 0.37 az = 995.42 mg
gx = -0.03 gy = -0.23 gz = -0.17 deg/s
mx = 0 my = 0 mz = 0 mG
q0 = 1.00 qx = 0.00 qy = 0.00 qz = 0.00
Gyro temperature is 34.0 degrees C
Yaw, Pitch, Roll: 13.80, 0.00, 0.00
Grav_x, Grav_y, Grav_z: 0.00, 0.00, 1000.00 mg
Lin_ax, Lin_ay, Lin_az: 0.73, 0.37, -4.58 mg
rate = 1.04 Hz

ax = 0.55 ay = -1.34 az = 995.30 mg
gx = 0.05 gy = 0.05 gz = -0.12 deg/s
mx = 27111 my = 164 mz = 35 mG
q0 = 0.64 qx = -0.00 qy = 0.00 qz = -0.77
Gyro temperature is 34.1 degrees C
Yaw, Pitch, Roll: 273.04, 0.00, -0.13
Grav_x, Grav_y, Grav_z: 2.33, 0.08, 1000.00 mg
Lin_ax, Lin_ay, Lin_az: -1.78, -1.43, -4.70 mg
rate = 4.87 Hz

ax = 376.28 ay = -1855.29 az = 494.32 mg
gx = 0.05 gy = 0.05 gz = -0.12 deg/s
mx = 27111 my = 164 mz = 35 mG
q0 = 0.51 qx = -0.33 qy = 0.60 qz = -0.52
Gyro temperature is 21.1 degrees C
Yaw, Pitch, Roll: 268.09, 16.15, -86.28
Grav_x, Grav_y, Grav_z: 958.51, 278.15, 62.35 mg
Lin_ax, Lin_ay, Lin_az: -582.23, -2133.44, 431.97 mg
rate = 4.87 Hz

ax = 376.28 ay = -1855.29 az = 494.32 mg
gx = 0.05 gy = 0.05 gz = -0.12 deg/s
mx = 27111 my = 164 mz = 35 mG
q0 = 0.41 qx = -0.17 qy = -0.18 qz = -0.88
Gyro temperature is 21.1 degrees C
Yaw, Pitch, Roll: 241.13, -26.40, 10.91
Grav_x, Grav_y, Grav_z: -169.48, -444.57, 879.57 mg
Lin_ax, Lin_ay, Lin_az: 545.76, -1410.72, -385.24 mg
rate = 4.87 Hz

@beaumr2
Copy link
Author

beaumr2 commented Jun 12, 2020

I should mention this is with the MPU9250 on a flat table and not moving, of course

@kriswiner
Copy link
Owner

kriswiner commented Jun 12, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 12, 2020

I get mag data after the first few iterations I thought: mx = 27111 my = 164 mz = 35 mG

If not then what would be preventing me from getting mag data?

@kriswiner
Copy link
Owner

kriswiner commented Jun 12, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

Arduino Uno

Not sure why it's corrupted? Here's the code I'm using. The quaternionfilter file is copied exactly from your website:

/*Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out.
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony filter algorithms.
Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.

The BME280 is a simple but high resolution pressure/humidity/temperature sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
only 1 microAmp. The choice will depend on the application.

SDA and SCL have 4K7 pull-up resistors (to 3.3V).
*/

#include "Wire.h"
#include "MPU9250.h"
#include "RTC.h"

#define SerialDebug true // set to true to get Serial output for debugging

// MPU9250 Configuration
// Specify sensor full scale
/* Choices are:

  • Gscale: GFS_250 == 250 dps, GFS_500 DPS == 500 dps, GFS_1000 == 1000 dps, and GFS_2000DPS == 2000 degrees per second gyro full scale
  • Ascale: AFS_2G == 2 g, AFS_4G == 4 g, AFS_8G == 8 g, and AFS_16G == 16 g accelerometer full scale
  • Mscale: MFS_14BITS == 0.6 mG per LSB and MFS_16BITS == 0.15 mG per LSB
  • Mmode: Mmode == M_8Hz for 8 Hz data rate or Mmode = M_100Hz for 100 Hz data rate
  • (1 + sampleRate) is a simple divisor of the fundamental 1000 kHz rate of the gyro and accel, so
  • sampleRate = 0x00 means 1 kHz sample rate for both accel and gyro, 0x04 means 200 Hz, etc.
    */
    uint8_t Gscale = GFS_250DPS, Ascale = AFS_2G, Mscale = MFS_16BITS, Mmode = M_100Hz, sampleRate = 0x04;
    float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
    float motion = 0; // check on linear acceleration to determine motion
    // global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
    float pi = 3.141592653589793238462643383279502884f;
    float GyroMeasError = pi * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
    float GyroMeasDrift = pi * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
    float beta = sqrtf(3.0f / 4.0f) * GyroMeasError; // compute beta
    float zeta = sqrtf(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
    bool wakeup;

// Pin definitions
int intPin = 9; // MPU9250 interrupt

bool intFlag = true;
bool newMagData = false;

int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag bias
float temperature; // Stores the MPU9250 internal chip temperature in degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test

// These can be measured once and entered here or can be calculated each time the device is powered on
float gyroBias[3] = {0.96, -0.21, 0.12}, accelBias[3] = {0.00299, -0.00916, 0.00952};
float magBias[3] = {71.04, 122.43, -36.90}, magScale[3] = {1.01, 1.03, 0.96}; // Bias corrections for gyro and accelerometer

uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll; // absolute orientation
float a12, a22, a31, a32, a33; // rotation matrix coefficients for Euler angles and gravity components
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
float lin_ax, lin_ay, lin_az; // linear acceleration (acceleration with gravity component subtracted)
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method

MPU9250 MPU9250(intPin); // instantiate MPU9250 class

void setup()
{
Serial.begin(115200);
delay(1000);

Wire.begin(); // set master mode, default on SDA/SCL for Ladybug
Wire.setClock(400000); // I2C frequency at 400 kHz
delay(1000);

MPU9250.I2Cscan(); // should detect BME280 at 0x77, MPU9250 at 0x71

pinMode(intPin, INPUT);

/* Configure the MPU9250 */
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
uint8_t c = MPU9250.getMPU9250ID();
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);
delay(1000);

if (c == 0x71 ) // WHO_AM_I should always be 0x71 for MPU9250, 0x73 for MPU9255
{
Serial.println("MPU9250 is online...");

MPU9250.resetMPU9250(); // start by resetting MPU9250

MPU9250.SelfTest(SelfTest); // Start by performing self test and reporting values
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);

// get sensor resolutions, only need to do this once
aRes = MPU9250.getAres(Ascale);
gRes = MPU9250.getGres(Gscale);
mRes = MPU9250.getMres(Mscale);

// Comment out if using pre-measured, pre-stored offset biases
MPU9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);

MPU9250.initMPU9250(Ascale, Gscale, sampleRate);
Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature

// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
byte d = MPU9250.getAK8963CID(); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);

// Get magnetometer calibration from AK8963 ROM
MPU9250.initAK8963Slave(Mscale, Mmode, magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer

// Comment out if using pre-measured, pre-stored offset biases
// MPU9250.magcalMPU9250(magBias, magScale);
Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]);
Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data

if(SerialDebug) {
Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);

attachInterrupt(intPin, myinthandler, RISING); // define interrupt for intPin output of MPU9250
}

}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}

}

void loop()
{
// If intPin goes high, either all data registers have new data
if(intFlag == true) { // On interrupt, read data
//intFlag = false; // reset newData flag

 MPU9250.readMPU9250Data(MPU9250Data); // INT cleared on any read

// Now we'll calculate the accleration value into actual g's
 ax = (float)MPU9250Data[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
 ay = (float)MPU9250Data[1]*aRes - accelBias[1];   
 az = (float)MPU9250Data[2]*aRes - accelBias[2];  

// Calculate the gyro value into actual degrees per second
 gx = (float)MPU9250Data[4]*gRes;  // get actual gyro value, this depends on scale being set
 gy = (float)MPU9250Data[5]*gRes;  
 gz = (float)MPU9250Data[6]*gRes; 

if( MPU9250.checkNewMagData() == true) { // wait for magnetometer data ready bit to be set
  MPU9250.readMagData(magCount);  // Read the x/y/z adc values

// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
  mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0];  // get actual magnetometer value, this depends on scale being set
  my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];  
  mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];  
  mx *= magScale[0];
  my *= magScale[1];
  mz *= magScale[2]; 
}


for(uint8_t i = 0; i < 10; i++) { // iterate a fixed number of times per data read cycle
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;

sum += deltat; // sum for averaging filter update rate
sumCount++;

MadgwickQuaternionUpdate(-ax, +ay, +az, gx*pi/180.0f, -gy*pi/180.0f, -gz*pi/180.0f,  my,  -mx, mz);
}

/* end of MPU9250 interrupt handling */

}

if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);  
Serial.print(" ay = "); Serial.print((int)1000*ay); 
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2); 
Serial.print(" gy = "); Serial.print( gy, 2); 
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)mx ); 
Serial.print(" my = "); Serial.print( (int)my ); 
Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");

Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]); 
Serial.print(" qy = "); Serial.print(q[2]); 
Serial.print(" qz = "); Serial.println(q[3]); 

temperature = ((float) MPU9250Data[3]) / 333.87f + 21.0f; // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade      
Serial.print("Gyro temperature is ");  Serial.print(temperature, 1);  Serial.println(" degrees C"); // Print T values to tenths of s degree C
}               

a12 =   2.0f * (q[1] * q[2] + q[0] * q[3]);
a22 =   q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3];
a31 =   2.0f * (q[0] * q[1] + q[2] * q[3]);
a32 =   2.0f * (q[1] * q[3] - q[0] * q[2]);
a33 =   q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
pitch = -asinf(a32);
roll  = atan2f(a31, a33);
yaw   = atan2f(a12, a22);
pitch *= 180.0f / pi;
yaw   *= 180.0f / pi; 
yaw   += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(yaw < 0) yaw   += 360.0f; // Ensure yaw stays between 0 and 360
roll  *= 180.0f / pi;
lin_ax = ax + a31;
lin_ay = ay + a32;
lin_az = az - a33;

if(SerialDebug) {
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);

Serial.print("Grav_x, Grav_y, Grav_z: ");
Serial.print(-a31*1000.0f, 2);
Serial.print(", ");
Serial.print(-a32*1000.0f, 2);
Serial.print(", ");
Serial.print(a33*1000.0f, 2);  Serial.println(" mg");
Serial.print("Lin_ax, Lin_ay, Lin_az: ");
Serial.print(lin_ax*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_ay*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_az*1000.0f, 2);  Serial.println(" mg");

Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
sumCount = 0;
sum = 0;    
delay(2000);
}

}

//===================================================================================================================
//====== Set of useful functions
//===================================================================================================================

void myinthandler()
{
intFlag = true;
}

@kriswiner
Copy link
Owner

kriswiner commented Jun 13, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

When I leave intflag = false in there it never loops through and keeps spitting out the same data over and over

@kriswiner
Copy link
Owner

kriswiner commented Jun 13, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

Honestly I don't understand the concept of an interrupt. I googled it and it said pin 2 was my interrupt. So I can change that in the code. Does pin 2 have to be wired to something on the MPU9250?

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

Ah I connected it to the int pin on the MPU. Hold on

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

Thank you for being patient with my stupidity. Let's try to start over. I pulled your exact code and just changed my intPin, date, and time. I believe there is still a problem as it never gets into this if statement:

if(alarmFlag) { // update RTC output (serial display) whenever the RTC alarm condition is achieved  
   alarmFlag = false;

Everything up to that point seems alright. If I comment out that if statement it gives me a slew of data that is still not accurate. I'll repost the full code but like I said it should be nearly exactly yours

/* 07/6/2017 Copyright Tlera Corporation
*

  • Created by Kris Winer

Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out.
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony filter algorithms.
Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.

The BME280 is a simple but high resolution pressure/humidity/temperature sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
only 1 microAmp. The choice will depend on the application.

SDA and SCL have 4K7 pull-up resistors (to 3.3V).

Library may be used freely and without limit with attribution.
*/

#include "Wire.h"
#include "MPU9250.h"
#include "RTC.h"

#define SerialDebug true // set to true to get Serial output for debugging

// RTC set time using STM32L4 natve RTC class
/* Change these values to set the current initial time */
const uint8_t seconds = 30;
const uint8_t minutes = 40;
const uint8_t hours = 17;

/* Change these values to set the current initial date */
const uint8_t day = 12;
const uint8_t month = 6;
const uint8_t year = 20;

uint8_t Seconds, Minutes, Hours, Day, Month, Year;

bool alarmFlag = false; // for RTC alarm interrupt

// MPU9250 Configuration
// Specify sensor full scale
/* Choices are:

  • Gscale: GFS_250 == 250 dps, GFS_500 DPS == 500 dps, GFS_1000 == 1000 dps, and GFS_2000DPS == 2000 degrees per second gyro full scale
  • Ascale: AFS_2G == 2 g, AFS_4G == 4 g, AFS_8G == 8 g, and AFS_16G == 16 g accelerometer full scale
  • Mscale: MFS_14BITS == 0.6 mG per LSB and MFS_16BITS == 0.15 mG per LSB
  • Mmode: Mmode == M_8Hz for 8 Hz data rate or Mmode = M_100Hz for 100 Hz data rate
  • (1 + sampleRate) is a simple divisor of the fundamental 1000 kHz rate of the gyro and accel, so
  • sampleRate = 0x00 means 1 kHz sample rate for both accel and gyro, 0x04 means 200 Hz, etc.
    */
    uint8_t Gscale = GFS_250DPS, Ascale = AFS_2G, Mscale = MFS_16BITS, Mmode = M_100Hz, sampleRate = 0x04;
    float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
    float motion = 0; // check on linear acceleration to determine motion
    // global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
    float pi = 3.141592653589793238462643383279502884f;
    float GyroMeasError = pi * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
    float GyroMeasDrift = pi * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
    float beta = sqrtf(3.0f / 4.0f) * GyroMeasError; // compute beta
    float zeta = sqrtf(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
    bool wakeup;

// Pin definitions
int intPin = 2; // MPU9250 interrupt
int myLed = 13; // red led

bool intFlag = true;
bool newMagData = false;

int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag bias
float temperature; // Stores the MPU9250 internal chip temperature in degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test

// These can be measured once and entered here or can be calculated each time the device is powered on
float gyroBias[3] = {0.96, -0.21, 0.12}, accelBias[3] = {0.00299, -0.00916, 0.00952};
float magBias[3] = {71.04, 122.43, -36.90}, magScale[3] = {1.01, 1.03, 0.96}; // Bias corrections for gyro and accelerometer

uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll; // absolute orientation
float a12, a22, a31, a32, a33; // rotation matrix coefficients for Euler angles and gravity components
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
float lin_ax, lin_ay, lin_az; // linear acceleration (acceleration with gravity component subtracted)
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method

MPU9250 MPU9250(intPin); // instantiate MPU9250 class

void setup()
{
Serial.begin(115200);
delay(1000);

Wire.begin(); // set master mode, default on SDA/SCL for Ladybug
Wire.setClock(400000); // I2C frequency at 400 kHz
delay(1000);

MPU9250.I2Cscan(); // should detect BME280 at 0x77, MPU9250 at 0x71

// Set up the interrupt pin, it's set as active high, push-pull
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH); // start with orange led on (active HIGH)

pinMode(intPin, INPUT);

/* Configure the MPU9250 */
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
uint8_t c = MPU9250.getMPU9250ID();
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);
delay(1000);

if (c == 0x71 ) // WHO_AM_I should always be 0x71 for MPU9250, 0x73 for MPU9255
{
Serial.println("MPU9250 is online...");

MPU9250.resetMPU9250(); // start by resetting MPU9250

MPU9250.SelfTest(SelfTest); // Start by performing self test and reporting values
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);

// get sensor resolutions, only need to do this once
aRes = MPU9250.getAres(Ascale);
gRes = MPU9250.getGres(Gscale);
mRes = MPU9250.getMres(Mscale);

// Comment out if using pre-measured, pre-stored offset biases
MPU9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);

MPU9250.initMPU9250(Ascale, Gscale, sampleRate);
Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature

// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
byte d = MPU9250.getAK8963CID(); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);

// Get magnetometer calibration from AK8963 ROM
MPU9250.initAK8963Slave(Mscale, Mmode, magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer

// Comment out if using pre-measured, pre-stored offset biases
// MPU9250.magcalMPU9250(magBias, magScale);
Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]);
Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data

if(SerialDebug) {
Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);

attachInterrupt(intPin, myinthandler, RISING); // define interrupt for intPin output of MPU9250
}

}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}

}

void loop()
{
// If intPin goes high, either all data registers have new data
if(intFlag == true) { // On interrupt, read data
intFlag = false; // reset newData flag

 MPU9250.readMPU9250Data(MPU9250Data); // INT cleared on any read

// Now we'll calculate the accleration value into actual g's
 ax = (float)MPU9250Data[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
 ay = (float)MPU9250Data[1]*aRes - accelBias[1];   
 az = (float)MPU9250Data[2]*aRes - accelBias[2];  

// Calculate the gyro value into actual degrees per second
 gx = (float)MPU9250Data[4]*gRes;  // get actual gyro value, this depends on scale being set
 gy = (float)MPU9250Data[5]*gRes;  
 gz = (float)MPU9250Data[6]*gRes; 

// if( MPU9250.checkNewMagData() == true) { // wait for magnetometer data ready bit to be set
MPU9250.readMagData(magCount); // Read the x/y/z adc values

// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
  mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0];  // get actual magnetometer value, this depends on scale being set
  my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];  
  mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];  
  mx *= magScale[0];
  my *= magScale[1];
  mz *= magScale[2]; 

// }

for(uint8_t i = 0; i < 10; i++) { // iterate a fixed number of times per data read cycle
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;

sum += deltat; // sum for averaging filter update rate
sumCount++;

MadgwickQuaternionUpdate(-ax, +ay, +az, gx*pi/180.0f, -gy*pi/180.0f, -gz*pi/180.0f,  my,  -mx, mz);
}

/* end of MPU9250 interrupt handling */

}

if(alarmFlag) { // update RTC output (serial display) whenever the RTC alarm condition is achieved  
   alarmFlag = false;



if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);  
Serial.print(" ay = "); Serial.print((int)1000*ay); 
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2); 
Serial.print(" gy = "); Serial.print( gy, 2); 
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)mx ); 
Serial.print(" my = "); Serial.print( (int)my ); 
Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");

Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]); 
Serial.print(" qy = "); Serial.print(q[2]); 
Serial.print(" qz = "); Serial.println(q[3]); 

temperature = ((float) MPU9250Data[3]) / 333.87f + 21.0f; // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade      
Serial.print("Gyro temperature is ");  Serial.print(temperature, 1);  Serial.println(" degrees C"); // Print T values to tenths of s degree C
}               

a12 =   2.0f * (q[1] * q[2] + q[0] * q[3]);
a22 =   q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3];
a31 =   2.0f * (q[0] * q[1] + q[2] * q[3]);
a32 =   2.0f * (q[1] * q[3] - q[0] * q[2]);
a33 =   q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
pitch = -asinf(a32);
roll  = atan2f(a31, a33);
yaw   = atan2f(a12, a22);
pitch *= 180.0f / pi;
yaw   *= 180.0f / pi; 
yaw   += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(yaw < 0) yaw   += 360.0f; // Ensure yaw stays between 0 and 360
roll  *= 180.0f / pi;
lin_ax = ax + a31;
lin_ay = ay + a32;
lin_az = az - a33;

if(SerialDebug) {
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);

Serial.print("Grav_x, Grav_y, Grav_z: ");
Serial.print(-a31*1000.0f, 2);
Serial.print(", ");
Serial.print(-a32*1000.0f, 2);
Serial.print(", ");
Serial.print(a33*1000.0f, 2);  Serial.println(" mg");
Serial.print("Lin_ax, Lin_ay, Lin_az: ");
Serial.print(lin_ax*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_ay*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_az*1000.0f, 2);  Serial.println(" mg");

Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
sumCount = 0;
sum = 0;    
}

} /* end of alarm handling */

}

//===================================================================================================================
//====== Set of useful functions
//===================================================================================================================

void myinthandler()
{
intFlag = true;
}

void alarmMatch()
{
alarmFlag = true;
}

@kriswiner
Copy link
Owner

kriswiner commented Jun 13, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

No it does not. I see the problem now. What MCU do you use? I'll buy that one unless there's an easy workaround for the RTC code

@kriswiner
Copy link
Owner

kriswiner commented Jun 13, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 13, 2020

Thank you I just placed an order for both. I will update you when I get the boards. Thanks again!

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

So I'm now using that Dragonfly STM32L47696 Board and using Pin 9 as the interrupt and having the same issue. The RTC flag isn't changing to true. I have input my current date and time

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

So I downloaded that and get a new error:
exit status 1
no matching function for call to 'TwoWireEx::begin(int, int, bool)'

Weirdly it highlights this line of code:
Wire.begin(0, 400000, true); // set master mode, I2C frequncy at 400 kHz
delay(1000);

I put the Wire folder in with your Dragonfly-Master. Is there a folder called TwoWireEx I need?

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

I see the TwoWireEx in GrumpyOldPizza's Wire.cpp file. I downloaded the board from here:

https://github.com/GrumpyOldPizza/arduino-STM32L4

I'm thinking there's been an update that no longer likes his code for TwoWireEx::begin

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

Okay and that seems to work. Does this wiring sound good:

3V3->VCC
GND->GND
SDA->SDA
SCL->SCL
9->INT this is the one I'm really asking about. Based on your link here: https://github.com/kriswiner/Dragonfly or do I have to solder a wire to the back pad 41 that is INT? Then I might as well also solder to SDA and SCL

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

So many issues... didn't even get to test it. I had no serial port showing up even though it still showed with my Arduino Uno. Now when I plug in the Dragonfly STM32L476 the light on it doesn't even come one

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

It was working originally and then all of a sudden the port for it disappeared. I tried multiple USB cables and even plugged it into the wall and it doesn't light up. But I used a multimeter to the ground and 3.3V and measured 3.3V so I guess it's working?

Did all that and still no serial port. Like I said the serial port just disappeared. I was trying to mess around with FTDI drivers and CH340 based on what I saw online but to be honest this stuff is over my head and I don't really understand it. I'm operating on OS X Catalina. I also plugged in my arduino Uno and it discovered that port just fine

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Jun 18, 2020

Just got it to appear again by moving around my FTDIusbSerial.kext file. Uploaded code fine even though there is no light and I got a new prompt to wave the board in a figure 8 to calibrate the magnetometer. Can't really do that with how my wires are currently set up and I have to leave for work. Tonight or tomorrow I'll solder some and update you. Thanks for everything! (And yes I tried your method, the blink file uploaded and worked even without the Serial port being there)

@kriswiner
Copy link
Owner

kriswiner commented Jun 18, 2020 via email

@basil96 basil96 mentioned this issue Jun 18, 2020
@kriswiner
Copy link
Owner

kriswiner commented Aug 13, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 13, 2020

Yeah I'm using the latter board linked there

@kriswiner
Copy link
Owner

kriswiner commented Aug 13, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 21, 2020

I ended up buying another sensor, exact same vendor and everything:
https://smile.amazon.com/gp/product/B01I1J0Z7Y/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1

Problem now is no matter what my x-axis accel is zero. You think it could just be a faulty sensor? Everything else is working well

Here's some sample output with me waving it all around. I have it still during calibration

ax = 0.00 ay = -466.49 az = 144.41 mg
gx = -52.67 gy = 89.88 gz = -0.03 deg/s
Pitch & Roll: -37.52, 1.03
Maximum Pitch & Roll
37.52,22.19
ax = 0.00 ay = -837.89 az = 852.17 mg
gx = 30.68 gy = -76.27 gz = 0.13 deg/s
Pitch & Roll: -36.36, -9.82
Maximum Pitch & Roll
37.52,22.19
ax = 0.00 ay = -436.52 az = 1437.62 mg
gx = -51.30 gy = -103.14 gz = -0.16 deg/s
Pitch & Roll: -51.85, 13.69
Maximum Pitch & Roll
51.85,22.19
ax = 0.00 ay = -837.89 az = 578.55 mg
gx = 114.14 gy = 249.99 gz = 0.15 deg/s
Pitch & Roll: -65.91, 12.87
Maximum Pitch & Roll
65.91,22.19
ax = 0.00 ay = -837.89 az = 1244.32 mg
gx = -78.32 gy = 156.17 gz = 0.15 deg/s
Pitch & Roll: -11.88, 22.59
Maximum Pitch & Roll
65.91,22.59
ax = 0.00 ay = -837.89 az = -1157.23 mg
gx = -71.97 gy = 155.55 gz = 0.11 deg/s
Pitch & Roll: -18.38, -14.19
Maximum Pitch & Roll
65.91,22.59
ax = 0.00 ay = -837.89 az = 266.05 mg
gx = -11.44 gy = 46.17 gz = -0.03 deg/s
Pitch & Roll: -28.08, -27.48
Maximum Pitch & Roll
65.91,27.48
ax = 0.00 ay = -623.29 az = 1225.95 mg
gx = -29.97 gy = 211.76 gz = 0.15 deg/s
Pitch & Roll: -14.54, 28.25
Maximum Pitch & Roll
65.91,28.25
ax = 0.00 ay = -837.89 az = -582.03 mg
gx = 171.13 gy = -73.61 gz = 0.10 deg/s

@kriswiner
Copy link
Owner

kriswiner commented Aug 21, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 21, 2020

Yeah I think it's busted. It shows -2000mg every time on the self test. Gotta get a new one

@kriswiner
Copy link
Owner

kriswiner commented Aug 21, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

So I bought that but am now having new problems. Here's my wiring, same as I had it with the old MPU9250:

VCC-> 3V3
GND->GND
Pin 29 -> SCL
Pin 28 -> SDA
Pin 9 -> INT

And I get this error:
MPU9250 9-axis motion sensor...
MPU9250 I AM 10 I should be 71
Could not connect to MPU9250

Is there any code that needs to change with this new MPU9250?

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

Sorry this is the error, left off the last bit:

MPU9250 9-axis motion sensor...
MPU9250 I AM 10 I should be 71
Could not connect to MPU9250: 0x10

@kriswiner
Copy link
Owner

kriswiner commented Aug 31, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

I'm using the dragonfly STM32L476. It's works fine with the old MPU9250 I linked but not this one. And yes, I'm using that code

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

3.3V on both SCL and SDA pins

@kriswiner
Copy link
Owner

kriswiner commented Aug 31, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

IMG_2732
IMG_6248
IMG_6566
IMG_7421

Wiring:
Pin 29 -> SCL
Pin 28 -> SDA

Sorry it's pretty hard to make out what's in the picture.

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

Here's the full code. Works fine with the old MPU9250 and same wiring. Can't connect to the one you recently linked for some reason

/* MPU9250 Basic Example Code
*

  • MAKE SURE TO PLUG IN MAGNETIC DECLINATION OF YOUR LOCATION
  • AND SAVE MAGNETIC CALIBRATION VALUES
    by: Kris Winer
    date: May 1, 2016
    license: Beerware - Use this code however you'd like. If you
    find it useful you can buy me a beer some time.

Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out.
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony filter algorithms.

This version uses the MPU9250 interrupt instead of polling and gets up to 13.5 kHz sensor fusion rates using the Madgwick algorithm.

Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.

SDA and SCL have 4K7 pull-up resistors (to 3.3V).

*/

#include "Wire.h"
#define Serial SerialUSB // might not be needed in future

// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
//
//Magnetometer Registers
#define AK8963_ADDRESS 0x0C
#define WHO_AM_I_AK8963 0x00 // should return 0x48
#define INFO 0x01
#define AK8963_ST1 0x02 // data ready status bit 0
#define AK8963_XOUT_L 0x03 // data
#define AK8963_XOUT_H 0x04
#define AK8963_YOUT_L 0x05
#define AK8963_YOUT_H 0x06
#define AK8963_ZOUT_L 0x07
#define AK8963_ZOUT_H 0x08
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC 0x0C // Self test control
#define AK8963_I2CDIS 0x0F // I2C disable
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value

#define SELF_TEST_X_GYRO 0x00
#define SELF_TEST_Y_GYRO 0x01
#define SELF_TEST_Z_GYRO 0x02

/*#define X_FINE_GAIN 0x03 // [7:0] fine gain
#define Y_FINE_GAIN 0x04
#define Z_FINE_GAIN 0x05
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC 0x07
#define YA_OFFSET_H 0x08
#define YA_OFFSET_L_TC 0x09
#define ZA_OFFSET_H 0x0A
#define ZA_OFFSET_L_TC 0x0B */

#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E
#define SELF_TEST_Z_ACCEL 0x0F

#define SELF_TEST_A 0x10

#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
#define XG_OFFSET_L 0x14
#define YG_OFFSET_H 0x15
#define YG_OFFSET_L 0x16
#define ZG_OFFSET_H 0x17
#define ZG_OFFSET_L 0x18
#define SMPLRT_DIV 0x19
#define CONFIG 0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define ACCEL_CONFIG2 0x1D
#define LP_ACCEL_ODR 0x1E
#define WOM_THR 0x1F

#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms

#define FIFO_EN 0x23
#define I2C_MST_CTRL 0x24
#define I2C_SLV0_ADDR 0x25
#define I2C_SLV0_REG 0x26
#define I2C_SLV0_CTRL 0x27
#define I2C_SLV1_ADDR 0x28
#define I2C_SLV1_REG 0x29
#define I2C_SLV1_CTRL 0x2A
#define I2C_SLV2_ADDR 0x2B
#define I2C_SLV2_REG 0x2C
#define I2C_SLV2_CTRL 0x2D
#define I2C_SLV3_ADDR 0x2E
#define I2C_SLV3_REG 0x2F
#define I2C_SLV3_CTRL 0x30
#define I2C_SLV4_ADDR 0x31
#define I2C_SLV4_REG 0x32
#define I2C_SLV4_DO 0x33
#define I2C_SLV4_CTRL 0x34
#define I2C_SLV4_DI 0x35
#define I2C_MST_STATUS 0x36
#define INT_PIN_CFG 0x37
#define INT_ENABLE 0x38
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
#define INT_STATUS 0x3A
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO 0x63
#define I2C_SLV1_DO 0x64
#define I2C_SLV2_DO 0x65
#define I2C_SLV3_DO 0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET 0x68
#define MOT_DETECT_CTRL 0x69
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2 0x6C
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
#define DMP_REG_1 0x70
#define DMP_REG_2 0x71
#define FIFO_COUNTH 0x72
#define FIFO_COUNTL 0x73
#define FIFO_R_W 0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H 0x77
#define XA_OFFSET_L 0x78
#define YA_OFFSET_H 0x7A
#define YA_OFFSET_L 0x7B
#define ZA_OFFSET_H 0x7D
#define ZA_OFFSET_L 0x7E

// Define I2C addresses of MPU9250
#define ADO 0
#if ADO
#define MPU9250_ADDRESS 0x69 // Device address when ADO = 1
#define AK8963_ADDRESS 0x0C // Address of magnetometer
#else
#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0
#define AK8963_ADDRESS 0x0C // Address of magnetometer
#endif

#define AHRS true // set to false for basic data read
#define SerialDebug true // set to true to get Serial output for debugging

// Set initial input parameters
enum Ascale {
AFS_2G = 0,
AFS_4G,
AFS_8G,
AFS_16G
};

enum Gscale {
GFS_250DPS = 0,
GFS_500DPS,
GFS_1000DPS,
GFS_2000DPS
};

enum Mscale {
MFS_14BITS = 0, // 0.6 mG per LSB
MFS_16BITS // 0.15 mG per LSB
};

// Specify sensor full scale
uint8_t Gscale = GFS_250DPS;
uint8_t Ascale = AFS_2G;
uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit magnetometer resolution
uint8_t Mmode = 0x06; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors

// Pin definitions
int intPin = 9; // When mounted on back pads SDA = 42, SCL = 43, and INT = 41
bool newData = false;
uint8_t rawMPU9250Data[14];
uint8_t rawAK8963Data[8];

//int myLed = 13; // green led

int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag bias
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}, magScale[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
int16_t tempCount; // temperature raw count output
float temperature; // Stores the real internal chip temperature in degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test

// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrtf(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrtf(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f

uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll;
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method

//All measurements in inches, weights in lbs
const double WB = 2.5005; //Wheelbase
const double TW = 1.868; //Track width
const double HH = .4455; //Hub height (aka axle height)
const double RH = .642; //Raised height
const double W = 97.93; //Total weight
const double PW = 48.71; //Passenger weight
const double RW = 51.54; //Rear weight
const double RWr = 55.65; //Rear weight when raise
double CGx = 0; //Center of Gravity from driver's side tire outer edge
double CGy = 0; //CoG behind front axle
double CGz = 0; //CoG from ground
double LRTheta = 0; //Left rollover angle
double RRTheta = 0; //Right rollover angle
double FRTheta = 0; //Front rollover angle
double ARTheta = 0; //Aft (rear) rollover angle

double MaxRoll = 0;
double MaxPitch = 0;
#define RAD_TO_DEG 57.295779513082320876798154814105 //180 divided by pi

#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 7, 5, 4, 3, 2);

const int switchPin = 6;
int switchState = 0;
int prevSwitchState = 0;

void setup()
{
Serial.begin(115200);
delay(1000);
Wire.begin(TWI_PINS_20_21); // set master mode
Wire.setClock(400000); // I2C frequency at 400 kHz
delay(1000);

// Set up the interrupt pin, it's set as active high, push-pull
pinMode(intPin, INPUT);
// pinMode(myLed, OUTPUT);
// digitalWrite(myLed, LOW); // start with green led on (active LOW)

// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);
delay(1000);

if (c == 0x71) // WHO_AM_I should always be 0x68
{
Serial.println("MPU9250 is online...");

MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
/*Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);
*/

// get sensor resolutions, only need to do this once
getAres();
getGres();
getMres();

calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
/accelBias[0] = 0;
accelBias[1] = 0;
accelBias[2] = 1; /

gyroBias[0] = -4.82;
gyroBias[1] = -10.18;
gyroBias[2] = -.64;*/
//USE THIS instead of calibrating accelerometer and gyroscope every time
//Because the Jeep shaking while running will affect it.
//So calibrate once while on level ground as it sits in the Jeep then store those values
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);

initMPU9250();
Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature

// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);

// Get magnetometer calibration from AK8963 ROM
initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer

magcalMPU9250(magBias, magScale);
//Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]);
//Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data

if(SerialDebug) {
/* Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);
*/
attachInterrupt(intPin, myinthandler, RISING); // define interrupt for INT pin output of MPU9250
}

}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}

CGx = PW * TW / W;
CGy = RW * WB / W;
CGz = HH + ((RWr - RW) / W) * ((sqrt((sq(WB))-(sq(RH)))*WB) / RH);

Serial.print("Your x center of gravity is: ");
Serial.println(CGx);
Serial.print("Your y center of gravity is: ");
Serial.println(CGy);
Serial.print("Your z center of gravity is: ");
Serial.println(CGz);

LRTheta = atan2(CGx, CGz) * RAD_TO_DEG;
RRTheta = atan2(TW-CGx, CGz) * RAD_TO_DEG;
FRTheta = atan2(CGy, CGz) * RAD_TO_DEG;
ARTheta = atan2(WB-CGy, CGz) * RAD_TO_DEG;

lcd.begin(16, 2);
lcd.setCursor(0, 0);
lcd.print("Left rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(LRTheta);
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Right rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(RRTheta);
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Front rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(FRTheta);
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Rear rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(ARTheta);
delay(2000);
lcd.clear();
pinMode(switchPin, INPUT);
}

void loop()
{
// If intPin goes high, all data registers have new data
if(newData == true) { // On interrupt, read data
newData = false; // reset newData flag
readMPU9250Data(MPU9250Data); // INT cleared on any read
// readAccelData(accelCount); // Read the x/y/z adc values

// Now we'll calculate the accleration value into actual g's
ax = (float)MPU9250Data[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
ay = (float)MPU9250Data[1]*aRes - accelBias[1];   
az = (float)MPU9250Data[2]*aRes - accelBias[2];  

// readGyroData(gyroCount); // Read the x/y/z adc values

// Calculate the gyro value into actual degrees per second
gx = (float)MPU9250Data[4]*gRes;  // get actual gyro value, this depends on scale being set
gy = (float)MPU9250Data[5]*gRes;  
gz = (float)MPU9250Data[6]*gRes;   

readAK8963Data(magCount);  // Read the x/y/z adc values

// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0];  // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];  
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];  
mx *= magScale[0];
my *= magScale[1];
mz *= magScale[2];  

}

Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;

sum += deltat; // sum for averaging filter update rate
sumCount++;

// Sensors x (y)-axis of the accelerometer/gyro is aligned with the y (x)-axis of the magnetometer;

// the magnetometer z-axis (+ down) is misaligned with z-axis (+ up) of accelerometer and gyro!
// We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
// We will assume that +y accel/gyro is North, then x accel/gyro is East. So if we want te quaternions properly aligned
// we need to feed into the madgwick function Ay, Ax, -Az, Gy, Gx, -Gz, Mx, My, and Mz. But because gravity is by convention
// positive down, we need to invert the accel data, so we pass -Ay, -Ax, Az, Gy, Gx, -Gz, Mx, My, and Mz into the Madgwick
// function to get North along the accel +y-axis, East along the accel +x-axis, and Down along the accel -z-axis.
// This orientation choice can be modified to allow any convenient (non-NED) orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
MadgwickQuaternionUpdate(-ay, -ax, az, gyPI/180.0f, gxPI/180.0f, -gzPI/180.0f, mx, my, mz);
// if(passThru)MahonyQuaternionUpdate(-ay, -ax, az, gy
PI/180.0f, gxPI/180.0f, -gzPI/180.0f, mx, my, mz);

// Serial print and/or display at 1 s rate independent of data rates
delt_t = millis() - count;
if (delt_t > 500) { // update serial once per half-second independent of read rate

if(SerialDebug) {

Serial.print("ax = "); Serial.print((int)1000*ax);  
Serial.print(" ay = "); Serial.print((int)1000*ay); 
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2); 
Serial.print(" gy = "); Serial.print( gy, 2); 
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
/*
Serial.print("mx = "); Serial.print( (int)mx ); 
Serial.print(" my = "); Serial.print( (int)my ); 
Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");

Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]); 
Serial.print(" qy = "); Serial.print(q[2]); 
Serial.print(" qz = "); Serial.println(q[3]); 

*/
// tempCount = readTempData(); // Read the gyro adc values
temperature = ((float) MPU9250Data[3]) / 333.87 + 21.0; // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade
//Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C
}

// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
//Software AHRS:
yaw = atan2f(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asinf(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw += 0.13f; // .13 is the mag dec for Missouri Example: Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 so you would use 13.8
if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360
roll *= 180.0f / PI;

if(SerialDebug) {
Serial.print("Pitch & Roll: ");
//Serial.print(yaw, 2);
//Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);

// Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");

if(abs(pitch) > MaxPitch && millis() > 100000) {
MaxPitch = abs(pitch);
}
else if (abs(roll) > MaxRoll && millis() > 100000) {
MaxRoll = abs(roll);
}
else {}
Serial.println("Maximum Pitch & Roll");
Serial.print(MaxPitch, 2);
Serial.print(",");
Serial.println(MaxRoll, 2);
}

count = millis(); 
sumCount = 0;
sum = 0;    
}

lcd.setCursor(0, 0);
lcd.print("Pitch: ");
lcd.print(pitch);
lcd.setCursor(0, 1);
lcd.print("Roll: ");
lcd.print(roll);
delay(100);
switchState = digitalRead(switchPin);
if (switchState != prevSwitchState) {
if (switchState == LOW) {
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Max Pitch:");
lcd.print(MaxPitch);
lcd.setCursor(0,1);
lcd.print("Max Roll:");
lcd.print(MaxRoll);
delay(5000);
}
}
prevSwitchState = switchState;
}

//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================

void myinthandler()
{
uint8_t subAddress = ACCEL_XOUT_H;

Wire.transfer(MPU9250_ADDRESS, &subAddress, 1, &rawMPU9250Data[0], 14, true, mywirehandler1);
}

void mywirehandler1(uint8_t status)
{
uint8_t subAddress = AK8963_ST1;

Wire.transfer(AK8963_ADDRESS, &subAddress, 1, &rawAK8963Data[0], 8, true, mywirehandler2);
}

void mywirehandler2(uint8_t status)
{
newData = true;
}

void getMres() {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
case MFS_14BITS:
mRes = 10.*4912./8190.; // Proper scale to return milliGauss
break;
case MFS_16BITS:
mRes = 10.*4912./32760.0; // Proper scale to return milliGauss
break;
}
}

void getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case GFS_250DPS:
gRes = 250.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_1000DPS:
gRes = 1000.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}

void getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
}
}

void readMPU9250Data(int16_t * destination)
{
destination[0] = ((int16_t)rawMPU9250Data[0] << 8) | rawMPU9250Data[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawMPU9250Data[2] << 8) | rawMPU9250Data[3] ;
destination[2] = ((int16_t)rawMPU9250Data[4] << 8) | rawMPU9250Data[5] ;
destination[3] = ((int16_t)rawMPU9250Data[6] << 8) | rawMPU9250Data[7] ;
destination[4] = ((int16_t)rawMPU9250Data[8] << 8) | rawMPU9250Data[9] ;
destination[5] = ((int16_t)rawMPU9250Data[10] << 8) | rawMPU9250Data[11] ;
destination[6] = ((int16_t)rawMPU9250Data[12] << 8) | rawMPU9250Data[13] ;

}

void readAK8963Data(int16_t * destination)
{
if(rawAK8963Data[0] & 0x01) { // wait for magnetometer data ready bit to be set
uint8_t c = rawAK8963Data[7]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawAK8963Data[2] << 8) | rawAK8963Data[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawAK8963Data[4] << 8) | rawAK8963Data[3] ; // Data stored as little Endian
destination[2] = ((int16_t)rawAK8963Data[6] << 8) | rawAK8963Data[5] ;
}
}
}

void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}

void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}

void readMagData(int16_t * destination)
{
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
}

int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value
}

void initAK8963(float * destination)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10);
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
delay(10);
}

void initMPU9250()
{
// wake up device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset

// get stable time source
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);

// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x03);

// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Use a 1000 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above

// Set gyroscope full scale range
// Range selects FS_SEL and GFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x03; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear GS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register

// Set accelerometer full-scale range configuration
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value

// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value

// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates

// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
// writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12); // INT is 50 microsecond pulse and any read to clear
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
}

void magcalMPU9250(float * dest1, float * dest2)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0};

//Serial.println("Mag Calibration: Wave device in a figure eight until done!");
//delay(4000);
//COMMENTED THE ABOVE 2 LINES OUT BECAUSE NO NEED FOR MAG IF NOT USING YAW

// shoot for ~fifteen seconds of mag data
if(Mmode == 0x02) sample_count = 128; // at 8 Hz ODR, new mag data is available every 125 ms
if(Mmode == 0x06) sample_count = 1500; // at 100 Hz ODR, new mag data is available every 10 ms
for(ii = 0; ii < sample_count; ii++) {
readMagData(mag_temp); // Read the mag data
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
if(Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms
if(Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms
}

// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);

// Get hard iron correction
mag_bias[0]  = (mag_max[0] + mag_min[0])/2;  // get average x mag bias in counts
mag_bias[1]  = (mag_max[1] + mag_min[1])/2;  // get average y mag bias in counts
mag_bias[2]  = (mag_max[2] + mag_min[2])/2;  // get average z mag bias in counts

dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0];  // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];   
dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];  
   
// Get soft iron correction estimate
mag_scale[0]  = (mag_max[0] - mag_min[0])/2;  // get average x axis max chord length in counts
mag_scale[1]  = (mag_max[1] - mag_min[1])/2;  // get average y axis max chord length in counts
mag_scale[2]  = (mag_max[2] - mag_min[2])/2;  // get average z axis max chord length in counts

float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;

dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);

//Serial.println("Mag Calibration done!");
}

// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void calibrateMPU9250(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};

// reset device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);

// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
// else use the internal oscillator, bits 2:0 = 001
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
delay(200);

// Configure device for bias calculation
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);

// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity

uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g

// Configure FIFO to capture accelerometer and gyro data for bias calculation

writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes

// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging

for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;

accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0]  += (int32_t) gyro_temp[0];
gyro_bias[1]  += (int32_t) gyro_temp[1];
gyro_bias[2]  += (int32_t) gyro_temp[2];

}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;

if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}

// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;

// Push gyro biases to hardware registers
writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);

// Output scaled gyro biases for display in the main program
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;

// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.

int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);

uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis

for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}

// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);

data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers

// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
// writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
// writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
// writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
// writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
// writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
// writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);

// Output scaled accelerometer biases for display in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}

// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
float factoryTrim[6];
uint8_t FS = 0;

writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, FS<<3); // Set full scale range for the gyro to 250 dps
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, FS<<3); // Set full scale range for the accelerometer to 2 g

for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer

readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;

readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);       // Read the six raw data registers sequentially into data array

gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}

for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}

// Configure the accelerometer for self-test
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize

for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer

readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;

readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array

gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}

for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}

// Configure the gyro and accelerometer for normal operation
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize

// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results

// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)
(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)
(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)
(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation

// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i] - 100.; // Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3] - 100.; // Report percent differences
}

}

// I2C read/write functions for the MPU9250 sensors

    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
    uint8_t temp[2];
    temp[0] = subAddress;
    temp[1] = data;
    Wire.transfer(address, &temp[0], 2, NULL, 0); 
    }

    uint8_t readByte(uint8_t address, uint8_t subAddress) {
    uint8_t temp[1];
    Wire.transfer(address, &subAddress, 1, &temp[0], 1);
    return temp[0];
    }

    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
    Wire.transfer(address, &subAddress, 1, dest, count); 
    }

@kriswiner
Copy link
Owner

kriswiner commented Aug 31, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

I get that it's a rats nest but trust me that's not the problem

Using this board, same wiring, it works fine. Only problem is one axis of the accelerometer is junk as we talked about a few days ago
https://smile.amazon.com/gp/product/B01I1J0Z7Y/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1

And using this board I get the error that it can't connect
https://www.tindie.com/products/onehorse/ultimate-sensor-fusion-solution-mpu9250/
I know the wires are making good connections. Tested them with voltmeter and have run the code over and over doing my best to make sure there's contact (don't want to solder until I confirm it works)

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

I shouldn't need to change any code switching from one board to the other right?

@kriswiner
Copy link
Owner

kriswiner commented Aug 31, 2020 via email

@kriswiner
Copy link
Owner

kriswiner commented Aug 31, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

These pictures enough to convince you? Black = SDA/Pin 20, Yellow = SCL/Pin 21, Green = 3V3/3V3, Red = GND/GND

I was mistaken about Pin 29->SCL and 28-> SDA. They're actually pins 21 and 20, respectively. I said 29/28 because they're right under the pin labeled 30

It's definitely not the wiring. I've rewired the old MPU9250 twice and it immediately works. With the new MPU9250 no matter how much i try to ensure the wires are making contact it never works

IMG_9705
IMG_3671

@beaumr2
Copy link
Author

beaumr2 commented Aug 31, 2020

Also my bad, didn't connect the INT pin there to pin 9. Same result with it connected

@kriswiner
Copy link
Owner

kriswiner commented Aug 31, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Sep 1, 2020

IMG_3637
IMG_8404
IMG_6240
IMG_6705
Here's the new MPU9250. I know it's a pain to look between the wires but I promise they're all wired correctly and making contact. About to post the other pictures showing the same wiring for the old MPU9250

@beaumr2
Copy link
Author

beaumr2 commented Sep 1, 2020

IMG_1445
Uploading IMG_9634.JPG…
Uploading IMG_0450.JPG…

@beaumr2
Copy link
Author

beaumr2 commented Sep 1, 2020

IMG_0450
IMG_9634

@kriswiner
Copy link
Owner

kriswiner commented Sep 1, 2020 via email

@beaumr2
Copy link
Author

beaumr2 commented Sep 2, 2020

Yep that was the issue. Working now, just need to tackle the calibration part of it

@beaumr2
Copy link
Author

beaumr2 commented Sep 20, 2020

Thanks so much for all your help!!! Got my project complete, only 3 months later :)

Here's a video if you're curious. Anyway, thanks so much again. You've been great at dealing with my stupidity

@beaumr2 beaumr2 closed this as completed Sep 20, 2020
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants