-
Notifications
You must be signed in to change notification settings - Fork 471
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
QuaternionFilter Unstable q values #421
Comments
I should mention this is with the MPU9250 on a flat table and not moving, of course |
You are not getting any mag data, same corrupted output every cycle...
…On Fri, Jun 12, 2020 at 3:19 PM beaumr2 ***@***.***> wrote:
I should mention this is with the MPU9250 on a flat table and not moving,
of course
—
You are receiving this because you are subscribed to this thread.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKSAV53BIFISD5MFJC3RWKSVVANCNFSM4N4V4CIQ>
.
|
I get mag data after the first few iterations I thought: mx = 27111 my = 164 mz = 35 mG If not then what would be preventing me from getting mag data? |
our accel data is corrupted too:
ax = 376.28 ay = -1855.29 az = 494.32 mg
I would say your I2C API or conversion to int16_t is messed up. What is
your MCU?
…On Fri, Jun 12, 2020 at 3:41 PM beaumr2 ***@***.***> wrote:
I get mag data after the first few iterations I thought: mx = 27111 my =
164 mz = 35 mG
If not then what would be preventing me from getting mag data?
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKXXFXC6XWXQHH6RZ33RWKVK7ANCNFSM4N4V4CIQ>
.
|
Arduino Uno Not sure why it's corrupted? Here's the code I'm using. The quaternionfilter file is copied exactly from your website: /*Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, The BME280 is a simple but high resolution pressure/humidity/temperature sensor, which can be used in its high resolution SDA and SCL have 4K7 pull-up resistors (to 3.3V). #include "Wire.h" #define SerialDebug true // set to true to get Serial output for debugging // MPU9250 Configuration
// Pin definitions bool intFlag = true; int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro // These can be measured once and entered here or can be calculated each time the device is powered on uint32_t delt_t = 0; // used to control display output rate float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values MPU9250 MPU9250(intPin); // instantiate MPU9250 class void setup() Wire.begin(); // set master mode, default on SDA/SCL for Ladybug MPU9250.I2Cscan(); // should detect BME280 at 0x77, MPU9250 at 0x71 pinMode(intPin, INPUT); /* Configure the MPU9250 */ if (c == 0x71 ) // WHO_AM_I should always be 0x71 for MPU9250, 0x73 for MPU9255
// get sensor resolutions, only need to do this once // Comment out if using pre-measured, pre-stored offset biases MPU9250.initMPU9250(Ascale, Gscale, sampleRate); // Read the WHO_AM_I register of the magnetometer, this is a good test of communication // Get magnetometer calibration from AK8963 ROM // Comment out if using pre-measured, pre-stored offset biases if(SerialDebug) { attachInterrupt(intPin, myinthandler, RISING); // define interrupt for intPin output of MPU9250 } } void loop()
}
} //=================================================================================================================== void myinthandler() |
First thing to try is connect out bolded lines here:
*if( MPU9250.checkNewMagData() == true) { // wait for magnetometer
data ready bit to be set*
MPU9250.readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get
actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];
mx *= magScale[0];
my *= magScale[1];
mz *= magScale[2];
*}*
and why is this line commented out?
//intFlag = false; // reset newData flag
shouldn't be...
…On Fri, Jun 12, 2020 at 5:10 PM beaumr2 ***@***.***> wrote:
Arduino Uno
Not sure why it's corrupted? Here's the code I'm using. The
quaternionfilter file is copied exactly from your website:
/*Demonstrate basic MPU-9250 functionality including parameterizing the
register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data
out.
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony
filter algorithms.
Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.
The BME280 is a simple but high resolution pressure/humidity/temperature
sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution
mode with power consumption of
only 1 microAmp. The choice will depend on the application.
SDA and SCL have 4K7 pull-up resistors (to 3.3V).
*/
#include "Wire.h"
#include "MPU9250.h"
#include "RTC.h"
#define SerialDebug true // set to true to get Serial output for debugging
// MPU9250 Configuration
// Specify sensor full scale
/* Choices are:
- Gscale: GFS_250 == 250 dps, GFS_500 DPS == 500 dps, GFS_1000 == 1000
dps, and GFS_2000DPS == 2000 degrees per second gyro full scale
- Ascale: AFS_2G == 2 g, AFS_4G == 4 g, AFS_8G == 8 g, and AFS_16G ==
16 g accelerometer full scale
- Mscale: MFS_14BITS == 0.6 mG per LSB and MFS_16BITS == 0.15 mG per
LSB
- Mmode: Mmode == M_8Hz for 8 Hz data rate or Mmode = M_100Hz for 100
Hz data rate
- (1 + sampleRate) is a simple divisor of the fundamental 1000 kHz
rate of the gyro and accel, so
- sampleRate = 0x00 means 1 kHz sample rate for both accel and gyro,
0x04 means 200 Hz, etc.
*/
uint8_t Gscale = GFS_250DPS, Ascale = AFS_2G, Mscale = MFS_16BITS,
Mmode = M_100Hz, sampleRate = 0x04;
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
float motion = 0; // check on linear acceleration to determine motion
// global constants for 9 DoF fusion and AHRS (Attitude and Heading
Reference System)
float pi = 3.141592653589793238462643383279502884f;
float GyroMeasError = pi * (40.0f / 180.0f); // gyroscope measurement
error in rads/s (start at 40 deg/s)
float GyroMeasDrift = pi * (0.0f / 180.0f); // gyroscope measurement
drift in rad/s/s (start at 0.0 deg/s/s)
float beta = sqrtf(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrtf(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the
other free parameter in the Madgwick scheme usually set to a small or zero
value
bool wakeup;
// Pin definitions
int intPin = 9; // MPU9250 interrupt
bool intFlag = true;
bool newMagData = false;
int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the
MPU9250 accel/gyro
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag
bias
float temperature; // Stores the MPU9250 internal chip temperature in
degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test
// These can be measured once and entered here or can be calculated each
time the device is powered on
float gyroBias[3] = {0.96, -0.21, 0.12}, accelBias[3] = {0.00299,
-0.00916, 0.00952};
float magBias[3] = {71.04, 122.43, -36.90}, magScale[3] = {1.01, 1.03,
0.96}; // Bias corrections for gyro and accelerometer
uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll; // absolute orientation
float a12, a22, a31, a32, a33; // rotation matrix coefficients for Euler
angles and gravity components
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter
schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration
interval
uint32_t Now = 0; // used to calculate integration interval
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest
sensor data values
float lin_ax, lin_ay, lin_az; // linear acceleration (acceleration with
gravity component subtracted)
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for
Mahony method
MPU9250 MPU9250(intPin); // instantiate MPU9250 class
void setup()
{
Serial.begin(115200);
delay(1000);
Wire.begin(); // set master mode, default on SDA/SCL for Ladybug
Wire.setClock(400000); // I2C frequency at 400 kHz
delay(1000);
MPU9250.I2Cscan(); // should detect BME280 at 0x77, MPU9250 at 0x71
pinMode(intPin, INPUT);
/* Configure the MPU9250 */
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
uint8_t c = MPU9250.getMPU9250ID();
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX);
Serial.print(" I should be "); Serial.println(0x71, HEX);
delay(1000);
if (c == 0x71 ) // WHO_AM_I should always be 0x71 for MPU9250, 0x73 for
MPU9255
{
Serial.println("MPU9250 is online...");
MPU9250.resetMPU9250(); // start by resetting MPU9250
MPU9250.SelfTest(SelfTest); // Start by performing self test and reporting values
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);
// get sensor resolutions, only need to do this once
aRes = MPU9250.getAres(Ascale);
gRes = MPU9250.getGres(Gscale);
mRes = MPU9250.getMres(Mscale);
// Comment out if using pre-measured, pre-stored offset biases
MPU9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and
accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]);
Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]);
Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);
MPU9250.initMPU9250(Ascale, Gscale, sampleRate);
Serial.println("MPU9250 initialized for active data mode...."); //
Initialize device for active mode read of acclerometer, gyroscope, and
temperature
// Read the WHO_AM_I register of the magnetometer, this is a good test of
communication
byte d = MPU9250.getAK8963CID(); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX);
Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);
// Get magnetometer calibration from AK8963 ROM
MPU9250.initAK8963Slave(Mscale, Mmode, magCalibration);
Serial.println("AK8963 initialized for active data mode...."); //
Initialize device for active mode read of magnetometer
// Comment out if using pre-measured, pre-stored offset biases
// MPU9250.magcalMPU9250(magBias, magScale);
Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]);
Serial.println(magBias[1]); Serial.println(magBias[2]);
Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]);
Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data
if(SerialDebug) {
Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value ");
Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value ");
Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value ");
Serial.println(magCalibration[2], 2);
attachInterrupt(intPin, myinthandler, RISING); // define interrupt for
intPin output of MPU9250
}
}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
}
void loop()
{
// If intPin goes high, either all data registers have new data
if(intFlag == true) { // On interrupt, read data
//intFlag = false; // reset newData flag
MPU9250.readMPU9250Data(MPU9250Data); // INT cleared on any read
// Now we'll calculate the accleration value into actual g's
ax = (float)MPU9250Data[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)MPU9250Data[1]*aRes - accelBias[1];
az = (float)MPU9250Data[2]*aRes - accelBias[2];
// Calculate the gyro value into actual degrees per second
gx = (float)MPU9250Data[4]*gRes; // get actual gyro value, this depends on scale being set
gy = (float)MPU9250Data[5]*gRes;
gz = (float)MPU9250Data[6]*gRes;
if( MPU9250.checkNewMagData() == true) { // wait for magnetometer data ready bit to be set
MPU9250.readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];
mx *= magScale[0];
my *= magScale[1];
mz *= magScale[2];
}
for(uint8_t i = 0; i < 10; i++) { // iterate a fixed number of times per data read cycle
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
MadgwickQuaternionUpdate(-ax, +ay, +az, gx*pi/180.0f, -gy*pi/180.0f, -gz*pi/180.0f, my, -mx, mz);
}
/* end of MPU9250 interrupt handling */
}
if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)mx );
Serial.print(" my = "); Serial.print( (int)my );
Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
temperature = ((float) MPU9250Data[3]) / 333.87f + 21.0f; // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade
Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C
}
a12 = 2.0f * (q[1] * q[2] + q[0] * q[3]);
a22 = q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3];
a31 = 2.0f * (q[0] * q[1] + q[2] * q[3]);
a32 = 2.0f * (q[1] * q[3] - q[0] * q[2]);
a33 = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
pitch = -asinf(a32);
roll = atan2f(a31, a33);
yaw = atan2f(a12, a22);
pitch *= 180.0f / pi;
yaw *= 180.0f / pi;
yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360
roll *= 180.0f / pi;
lin_ax = ax + a31;
lin_ay = ay + a32;
lin_az = az - a33;
if(SerialDebug) {
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
Serial.print("Grav_x, Grav_y, Grav_z: ");
Serial.print(-a31*1000.0f, 2);
Serial.print(", ");
Serial.print(-a32*1000.0f, 2);
Serial.print(", ");
Serial.print(a33*1000.0f, 2); Serial.println(" mg");
Serial.print("Lin_ax, Lin_ay, Lin_az: ");
Serial.print(lin_ax*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_ay*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_az*1000.0f, 2); Serial.println(" mg");
Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
sumCount = 0;
sum = 0;
delay(2000);
}
}
//===================================================================================================================
//====== Set of useful functions
//===================================================================================================================
void myinthandler()
{
intFlag = true;
}
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKUHCGHZWF53SRNRKPLRWK7ZDANCNFSM4N4V4CIQ>
.
|
When I leave intflag = false in there it never loops through and keeps spitting out the same data over and over |
Then you are never getting an interrupt. Is pin 9 an interrupt pin on your
MCU?
…On Fri, Jun 12, 2020 at 5:20 PM beaumr2 ***@***.***> wrote:
When I leave intflag = false in there it never loops through and keeps
spitting out the same data over and over
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKWS2TS3VYYCXSP4AF3RWLA6PANCNFSM4N4V4CIQ>
.
|
Honestly I don't understand the concept of an interrupt. I googled it and it said pin 2 was my interrupt. So I can change that in the code. Does pin 2 have to be wired to something on the MPU9250? |
Ah I connected it to the int pin on the MPU. Hold on |
Thank you for being patient with my stupidity. Let's try to start over. I pulled your exact code and just changed my intPin, date, and time. I believe there is still a problem as it never gets into this if statement:
Everything up to that point seems alright. If I comment out that if statement it gives me a slew of data that is still not accurate. I'll repost the full code but like I said it should be nearly exactly yours /* 07/6/2017 Copyright Tlera Corporation
Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, The BME280 is a simple but high resolution pressure/humidity/temperature sensor, which can be used in its high resolution SDA and SCL have 4K7 pull-up resistors (to 3.3V). Library may be used freely and without limit with attribution. #include "Wire.h" #define SerialDebug true // set to true to get Serial output for debugging // RTC set time using STM32L4 natve RTC class /* Change these values to set the current initial date */ uint8_t Seconds, Minutes, Hours, Day, Month, Year; bool alarmFlag = false; // for RTC alarm interrupt // MPU9250 Configuration
// Pin definitions bool intFlag = true; int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro // These can be measured once and entered here or can be calculated each time the device is powered on uint32_t delt_t = 0; // used to control display output rate float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values MPU9250 MPU9250(intPin); // instantiate MPU9250 class void setup() Wire.begin(); // set master mode, default on SDA/SCL for Ladybug MPU9250.I2Cscan(); // should detect BME280 at 0x77, MPU9250 at 0x71 // Set up the interrupt pin, it's set as active high, push-pull pinMode(intPin, INPUT); /* Configure the MPU9250 */ if (c == 0x71 ) // WHO_AM_I should always be 0x71 for MPU9250, 0x73 for MPU9255
// get sensor resolutions, only need to do this once // Comment out if using pre-measured, pre-stored offset biases MPU9250.initMPU9250(Ascale, Gscale, sampleRate); // Read the WHO_AM_I register of the magnetometer, this is a good test of communication // Get magnetometer calibration from AK8963 ROM // Comment out if using pre-measured, pre-stored offset biases if(SerialDebug) { attachInterrupt(intPin, myinthandler, RISING); // define interrupt for intPin output of MPU9250 } } void loop()
// if( MPU9250.checkNewMagData() == true) { // wait for magnetometer data ready bit to be set
// }
}
} /* end of alarm handling */ } //=================================================================================================================== void myinthandler() void alarmMatch() |
Does your Uno have an RTC?
…On Fri, Jun 12, 2020 at 5:51 PM beaumr2 ***@***.***> wrote:
Thank you for being patient with my stupidity. Let's try to start over. I
pulled your exact code and just changed my intPin, date, and time. I
believe there is still a problem as it never gets into this if statement:
if(alarmFlag) { // update RTC output (serial display) whenever the RTC alarm condition is achieved
alarmFlag = false;
Everything up to that point seems alright. If I comment out that if
statement it gives me a slew of data that is still not accurate. I'll
repost the full code but like I said it should be nearly exactly yours
/* 07/6/2017 Copyright Tlera Corporation
*
- Created by Kris Winer
-
Demonstrate basic MPU-9250 functionality including parameterizing the
register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data
out.
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony
filter algorithms.
Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.
The BME280 is a simple but high resolution pressure/humidity/temperature
sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution
mode with power consumption of
only 1 microAmp. The choice will depend on the application.
SDA and SCL have 4K7 pull-up resistors (to 3.3V).
Library may be used freely and without limit with attribution.
*/
#include "Wire.h"
#include "MPU9250.h"
#include "RTC.h"
#define SerialDebug true // set to true to get Serial output for debugging
// RTC set time using STM32L4 natve RTC class
/* Change these values to set the current initial time */
const uint8_t seconds = 30;
const uint8_t minutes = 40;
const uint8_t hours = 17;
/* Change these values to set the current initial date */
const uint8_t day = 12;
const uint8_t month = 6;
const uint8_t year = 20;
uint8_t Seconds, Minutes, Hours, Day, Month, Year;
bool alarmFlag = false; // for RTC alarm interrupt
// MPU9250 Configuration
// Specify sensor full scale
/* Choices are:
- Gscale: GFS_250 == 250 dps, GFS_500 DPS == 500 dps, GFS_1000 == 1000
dps, and GFS_2000DPS == 2000 degrees per second gyro full scale
- Ascale: AFS_2G == 2 g, AFS_4G == 4 g, AFS_8G == 8 g, and AFS_16G ==
16 g accelerometer full scale
- Mscale: MFS_14BITS == 0.6 mG per LSB and MFS_16BITS == 0.15 mG per
LSB
- Mmode: Mmode == M_8Hz for 8 Hz data rate or Mmode = M_100Hz for 100
Hz data rate
- (1 + sampleRate) is a simple divisor of the fundamental 1000 kHz
rate of the gyro and accel, so
- sampleRate = 0x00 means 1 kHz sample rate for both accel and gyro,
0x04 means 200 Hz, etc.
*/
uint8_t Gscale = GFS_250DPS, Ascale = AFS_2G, Mscale = MFS_16BITS,
Mmode = M_100Hz, sampleRate = 0x04;
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
float motion = 0; // check on linear acceleration to determine motion
// global constants for 9 DoF fusion and AHRS (Attitude and Heading
Reference System)
float pi = 3.141592653589793238462643383279502884f;
float GyroMeasError = pi * (40.0f / 180.0f); // gyroscope measurement
error in rads/s (start at 40 deg/s)
float GyroMeasDrift = pi * (0.0f / 180.0f); // gyroscope measurement
drift in rad/s/s (start at 0.0 deg/s/s)
float beta = sqrtf(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrtf(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the
other free parameter in the Madgwick scheme usually set to a small or zero
value
bool wakeup;
// Pin definitions
int intPin = 2; // MPU9250 interrupt
int myLed = 13; // red led
bool intFlag = true;
bool newMagData = false;
int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the
MPU9250 accel/gyro
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag
bias
float temperature; // Stores the MPU9250 internal chip temperature in
degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test
// These can be measured once and entered here or can be calculated each
time the device is powered on
float gyroBias[3] = {0.96, -0.21, 0.12}, accelBias[3] = {0.00299,
-0.00916, 0.00952};
float magBias[3] = {71.04, 122.43, -36.90}, magScale[3] = {1.01, 1.03,
0.96}; // Bias corrections for gyro and accelerometer
uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll; // absolute orientation
float a12, a22, a31, a32, a33; // rotation matrix coefficients for Euler
angles and gravity components
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter
schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration
interval
uint32_t Now = 0; // used to calculate integration interval
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest
sensor data values
float lin_ax, lin_ay, lin_az; // linear acceleration (acceleration with
gravity component subtracted)
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for
Mahony method
MPU9250 MPU9250(intPin); // instantiate MPU9250 class
void setup()
{
Serial.begin(115200);
delay(1000);
Wire.begin(); // set master mode, default on SDA/SCL for Ladybug
Wire.setClock(400000); // I2C frequency at 400 kHz
delay(1000);
MPU9250.I2Cscan(); // should detect BME280 at 0x77, MPU9250 at 0x71
// Set up the interrupt pin, it's set as active high, push-pull
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH); // start with orange led on (active HIGH)
pinMode(intPin, INPUT);
/* Configure the MPU9250 */
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
uint8_t c = MPU9250.getMPU9250ID();
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX);
Serial.print(" I should be "); Serial.println(0x71, HEX);
delay(1000);
if (c == 0x71 ) // WHO_AM_I should always be 0x71 for MPU9250, 0x73 for
MPU9255
{
Serial.println("MPU9250 is online...");
MPU9250.resetMPU9250(); // start by resetting MPU9250
MPU9250.SelfTest(SelfTest); // Start by performing self test and reporting values
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);
// get sensor resolutions, only need to do this once
aRes = MPU9250.getAres(Ascale);
gRes = MPU9250.getGres(Gscale);
mRes = MPU9250.getMres(Mscale);
// Comment out if using pre-measured, pre-stored offset biases
MPU9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and
accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]);
Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]);
Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);
MPU9250.initMPU9250(Ascale, Gscale, sampleRate);
Serial.println("MPU9250 initialized for active data mode...."); //
Initialize device for active mode read of acclerometer, gyroscope, and
temperature
// Read the WHO_AM_I register of the magnetometer, this is a good test of
communication
byte d = MPU9250.getAK8963CID(); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX);
Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);
// Get magnetometer calibration from AK8963 ROM
MPU9250.initAK8963Slave(Mscale, Mmode, magCalibration);
Serial.println("AK8963 initialized for active data mode...."); //
Initialize device for active mode read of magnetometer
// Comment out if using pre-measured, pre-stored offset biases
// MPU9250.magcalMPU9250(magBias, magScale);
Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]);
Serial.println(magBias[1]); Serial.println(magBias[2]);
Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]);
Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data
if(SerialDebug) {
Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value ");
Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value ");
Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value ");
Serial.println(magCalibration[2], 2);
attachInterrupt(intPin, myinthandler, RISING); // define interrupt for
intPin output of MPU9250
}
}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
}
void loop()
{
// If intPin goes high, either all data registers have new data
if(intFlag == true) { // On interrupt, read data
intFlag = false; // reset newData flag
MPU9250.readMPU9250Data(MPU9250Data); // INT cleared on any read
// Now we'll calculate the accleration value into actual g's
ax = (float)MPU9250Data[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)MPU9250Data[1]*aRes - accelBias[1];
az = (float)MPU9250Data[2]*aRes - accelBias[2];
// Calculate the gyro value into actual degrees per second
gx = (float)MPU9250Data[4]*gRes; // get actual gyro value, this depends on scale being set
gy = (float)MPU9250Data[5]*gRes;
gz = (float)MPU9250Data[6]*gRes;
// if( MPU9250.checkNewMagData() == true) { // wait for magnetometer data
ready bit to be set
MPU9250.readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];
mx *= magScale[0];
my *= magScale[1];
mz *= magScale[2];
// }
for(uint8_t i = 0; i < 10; i++) { // iterate a fixed number of times per data read cycle
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
MadgwickQuaternionUpdate(-ax, +ay, +az, gx*pi/180.0f, -gy*pi/180.0f, -gz*pi/180.0f, my, -mx, mz);
}
/* end of MPU9250 interrupt handling */
}
if(alarmFlag) { // update RTC output (serial display) whenever the RTC alarm condition is achieved
alarmFlag = false;
if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)mx );
Serial.print(" my = "); Serial.print( (int)my );
Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
temperature = ((float) MPU9250Data[3]) / 333.87f + 21.0f; // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade
Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C
}
a12 = 2.0f * (q[1] * q[2] + q[0] * q[3]);
a22 = q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3];
a31 = 2.0f * (q[0] * q[1] + q[2] * q[3]);
a32 = 2.0f * (q[1] * q[3] - q[0] * q[2]);
a33 = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
pitch = -asinf(a32);
roll = atan2f(a31, a33);
yaw = atan2f(a12, a22);
pitch *= 180.0f / pi;
yaw *= 180.0f / pi;
yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360
roll *= 180.0f / pi;
lin_ax = ax + a31;
lin_ay = ay + a32;
lin_az = az - a33;
if(SerialDebug) {
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
Serial.print("Grav_x, Grav_y, Grav_z: ");
Serial.print(-a31*1000.0f, 2);
Serial.print(", ");
Serial.print(-a32*1000.0f, 2);
Serial.print(", ");
Serial.print(a33*1000.0f, 2); Serial.println(" mg");
Serial.print("Lin_ax, Lin_ay, Lin_az: ");
Serial.print(lin_ax*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_ay*1000.0f, 2);
Serial.print(", ");
Serial.print(lin_az*1000.0f, 2); Serial.println(" mg");
Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
sumCount = 0;
sum = 0;
}
} /* end of alarm handling */
}
//===================================================================================================================
//====== Set of useful functions
//===================================================================================================================
void myinthandler()
{
intFlag = true;
}
void alarmMatch()
{
alarmFlag = true;
}
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKUMKR7RDEN3TQUVG2DRWLESRANCNFSM4N4V4CIQ>
.
|
No it does not. I see the problem now. What MCU do you use? I'll buy that one unless there's an easy workaround for the RTC code |
You need something better than an Uno anyway if you have any hope of sensor
fusion rates fast enough for accuracy. Cheap, go with this
<https://www.tindie.com/products/tleracorp/ladybug-stm32l432-development-board/>.
But I would recommend this
<https://www.tindie.com/products/tleracorp/dragonfly-stm32l47696-development-board/>
.
Both open source so easy to customize, both programmable using the Arduino
IDE via USB.
…On Fri, Jun 12, 2020 at 5:58 PM beaumr2 ***@***.***> wrote:
No it does not. I see the problem now. What MCU do you use? I'll buy that
one unless there's an easy workaround for the RTC code
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKTVO4VQJYWCJ45IT6TRWLFM5ANCNFSM4N4V4CIQ>
.
|
Thank you I just placed an order for both. I will update you when I get the boards. Thanks again! |
So I'm now using that Dragonfly STM32L47696 Board and using Pin 9 as the interrupt and having the same issue. The RTC flag isn't changing to true. I have input my current date and time |
" and having the same issue"
remind me what the issue is?
…On Wed, Jun 17, 2020 at 6:13 PM beaumr2 ***@***.***> wrote:
So I'm now using that Dragonfly STM32L47696 Board and using Pin 9 as the
interrupt and having the same issue. The RTC flag isn't changing to true. I
have input my current date and time
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKUD6G3VNBAGM7R5RULRXFS4XANCNFSM4N4V4CIQ>
.
|
Since you have a Dragonfly, try this:
https://github.com/kriswiner/Dragonfly/blob/master/MPU9250Optimized/MPU9250BasicAHRS3_Dragonfly.ino
On Wed, Jun 17, 2020 at 6:19 PM Tlera Corporation <[email protected]>
wrote:
… " and having the same issue"
remind me what the issue is?
On Wed, Jun 17, 2020 at 6:13 PM beaumr2 ***@***.***> wrote:
> So I'm now using that Dragonfly STM32L47696 Board and using Pin 9 as the
> interrupt and having the same issue. The RTC flag isn't changing to true. I
> have input my current date and time
>
> —
> You are receiving this because you commented.
> Reply to this email directly, view it on GitHub
> <#421 (comment)>,
> or unsubscribe
> <https://github.com/notifications/unsubscribe-auth/ABTDLKUD6G3VNBAGM7R5RULRXFS4XANCNFSM4N4V4CIQ>
> .
>
|
So I downloaded that and get a new error: Weirdly it highlights this line of code: I put the Wire folder in with your Dragonfly-Master. Is there a folder called TwoWireEx I need? |
I see the TwoWireEx in GrumpyOldPizza's Wire.cpp file. I downloaded the board from here: https://github.com/GrumpyOldPizza/arduino-STM32L4 I'm thinking there's been an update that no longer likes his code for TwoWireEx::begin |
This looks like an old context for Wire, try this instead:
Wire.begin(TWI_PINS_20_21); // set master mode
Wire.setClock(400000); // I2C frequency at 400 kHz
…On Wed, Jun 17, 2020 at 7:13 PM beaumr2 ***@***.***> wrote:
I see the TwoWireEx in GrumpyOldPizza's Wire.cpp file. I downloaded the
board from here:
https://github.com/GrumpyOldPizza/arduino-STM32L4
I'm thinking there's been an update that no longer likes his code for
TwoWireEx::begin
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKRWAENSZEXXPYJ4P3TRXFZ5FANCNFSM4N4V4CIQ>
.
|
Okay and that seems to work. Does this wiring sound good: 3V3->VCC |
I usually use pins 20 and 21 for I2C (SDA and SCL). You can use any other
pins for the interrupt. 8, 9, 10 are convenient but any pin will do. I
wouldn;t solder anything until you are sure everything is working as it
should.
Just make sure whichever pin you select as interrupt is specified in the
sketch.
[image: image.png]
…On Wed, Jun 17, 2020 at 7:41 PM beaumr2 ***@***.***> wrote:
Okay and that seems to work. Does this wiring sound good:
3V3->VCC
GND->GND
SDA->SDA
SCL->SCL
9->INT this is the one I'm really asking about. Based on your link here:
https://github.com/kriswiner/Dragonfly or do I have to solder a wire to
the back pad 41 that is INT? Then I might as well also solder to SDA and SCL
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKVMZWTUIDB2OQSLM3TRXF5EHANCNFSM4N4V4CIQ>
.
|
So many issues... didn't even get to test it. I had no serial port showing up even though it still showed with my Arduino Uno. Now when I plug in the Dragonfly STM32L476 the light on it doesn't even come one |
Is there a problem with your USB cable then? Do you have a multimeter? Can
you verify that there is 3V3 on the board?
If there is no power issue, close the Arduino IDE, plug in the USB cable,
press and hold boot, press and release reset, release boot. Then open the
Arduino IDE, select the proper board variant and flash a known good
program. This recovery procedure will fix problems usually due to trying to
flash with the wrong board variant selected.
What I don;t understand is I thought you said it was working, and now it is
totally fubared. What happened in between?
…On Thu, Jun 18, 2020 at 8:16 AM beaumr2 ***@***.***> wrote:
So many issues... didn't even get to test it. I had no serial port showing
up even though it still showed with my Arduino Uno. Now when I plug in the
Dragonfly STM32L476 the light on it doesn't even come one
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKTC6IXEOWD2ES2N2RTRXIVTHANCNFSM4N4V4CIQ>
.
|
It was working originally and then all of a sudden the port for it disappeared. I tried multiple USB cables and even plugged it into the wall and it doesn't light up. But I used a multimeter to the ground and 3.3V and measured 3.3V so I guess it's working? Did all that and still no serial port. Like I said the serial port just disappeared. I was trying to mess around with FTDI drivers and CH340 based on what I saw online but to be honest this stuff is over my head and I don't really understand it. I'm operating on OS X Catalina. I also plugged in my arduino Uno and it discovered that port just fine |
Did you follow the reboot procedure I specified? Can you verify that the
Dragonfly is in STM32 boot loader mode before flashing?
…On Thu, Jun 18, 2020 at 8:38 AM beaumr2 ***@***.***> wrote:
It was working originally and then all of a sudden the port for it
disappeared. I tried multiple USB cables and even plugged it into the wall
and it doesn't light up. But I used a multimeter to the ground and 3.3V and
measured 3.3V so I guess it's working?
Did all that and still no serial port. Like I said the serial port just
disappeared. I was trying to mess around with FTDI drivers and CH340 based
on what I saw online but to be honest this stuff is over my head and I
don't really understand it. I'm operating on OS X Catalina. I also plugged
in my arduino Uno and it discovered that port just fine
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKQLRVTUHUXZA3UVSLLRXIYF3ANCNFSM4N4V4CIQ>
.
|
Just got it to appear again by moving around my FTDIusbSerial.kext file. Uploaded code fine even though there is no light and I got a new prompt to wave the board in a figure 8 to calibrate the magnetometer. Can't really do that with how my wires are currently set up and I have to leave for work. Tonight or tomorrow I'll solder some and update you. Thanks for everything! (And yes I tried your method, the blink file uploaded and worked even without the Serial port being there) |
FTDIusbSerial.kext file
Not sure what this is, a Mac thing?
…On Thu, Jun 18, 2020 at 8:48 AM beaumr2 ***@***.***> wrote:
Just got it to appear again by moving around my FTDIusbSerial.kext file.
Uploaded code fine even though there is no light and I got a new prompt to
wave the board in a figure 8 to calibrate the magnetometer. Can't really do
that with how my wires are currently set up and I have to leave for work.
Tonight or tomorrow I'll solder some and update you. Thanks for everything!
(And yes I tried your method, the blink file uploaded and worked even
without the Serial port being there)
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKVWTNIYBQPVWEZHISTRXIZNPANCNFSM4N4V4CIQ>
.
|
This
<https://www.tindie.com/products/tleracorp/ladybug-stm32l432-development-board/>
should do. Or this
<https://www.tindie.com/products/tleracorp/dragonfly-stm32l47696-development-board/>
.
…On Thu, Aug 13, 2020 at 3:01 PM beaumr2 ***@***.***> wrote:
Okay. Thank you!!
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKTEMYWXTN4ZJLTYGUDSARPEDANCNFSM4N4V4CIQ>
.
|
Yeah I'm using the latter board linked there |
OK, you should be seeing fusion rates of several kHz then...
…On Thu, Aug 13, 2020 at 3:14 PM beaumr2 ***@***.***> wrote:
Yeah I'm using the latter board linked there
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKSRZWKTW5FJATT3IX3SARQTHANCNFSM4N4V4CIQ>
.
|
I ended up buying another sensor, exact same vendor and everything: Problem now is no matter what my x-axis accel is zero. You think it could just be a faulty sensor? Everything else is working well Here's some sample output with me waving it all around. I have it still during calibration ax = 0.00 ay = -466.49 az = 144.41 mg |
Those boards are usually OK, but I would get my money back. X-axis is
busted. What does it show on the self test?
…On Fri, Aug 21, 2020 at 12:44 PM beaumr2 ***@***.***> wrote:
I ended up buying another sensor, exact same vendor and everything:
https://smile.amazon.com/gp/product/B01I1J0Z7Y/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1
Problem now is no matter what my x-axis accel is zero. You think it could
just be a faulty sensor? Everything else is working well
Here's some sample output with me waving it all around. I have it still
during calibration
ax = 0.00 ay = -466.49 az = 144.41 mg
gx = -52.67 gy = 89.88 gz = -0.03 deg/s
Pitch & Roll: -37.52, 1.03
Maximum Pitch & Roll
37.52,22.19
ax = 0.00 ay = -837.89 az = 852.17 mg
gx = 30.68 gy = -76.27 gz = 0.13 deg/s
Pitch & Roll: -36.36, -9.82
Maximum Pitch & Roll
37.52,22.19
ax = 0.00 ay = -436.52 az = 1437.62 mg
gx = -51.30 gy = -103.14 gz = -0.16 deg/s
Pitch & Roll: -51.85, 13.69
Maximum Pitch & Roll
51.85,22.19
ax = 0.00 ay = -837.89 az = 578.55 mg
gx = 114.14 gy = 249.99 gz = 0.15 deg/s
Pitch & Roll: -65.91, 12.87
Maximum Pitch & Roll
65.91,22.19
ax = 0.00 ay = -837.89 az = 1244.32 mg
gx = -78.32 gy = 156.17 gz = 0.15 deg/s
Pitch & Roll: -11.88, 22.59
Maximum Pitch & Roll
65.91,22.59
ax = 0.00 ay = -837.89 az = -1157.23 mg
gx = -71.97 gy = 155.55 gz = 0.11 deg/s
Pitch & Roll: -18.38, -14.19
Maximum Pitch & Roll
65.91,22.59
ax = 0.00 ay = -837.89 az = 266.05 mg
gx = -11.44 gy = 46.17 gz = -0.03 deg/s
Pitch & Roll: -28.08, -27.48
Maximum Pitch & Roll
65.91,27.48
ax = 0.00 ay = -623.29 az = 1225.95 mg
gx = -29.97 gy = 211.76 gz = 0.15 deg/s
Pitch & Roll: -14.54, 28.25
Maximum Pitch & Roll
65.91,28.25
ax = 0.00 ay = -837.89 az = -582.03 mg
gx = 171.13 gy = -73.61 gz = 0.10 deg/s
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKUIJIKR2XZVSP7BQMLSB3FBNANCNFSM4N4V4CIQ>
.
|
Yeah I think it's busted. It shows -2000mg every time on the self test. Gotta get a new one |
Or buy something decent like:
https://www.tindie.com/products/onehorse/ultimate-sensor-fusion-solution-mpu9250/
…On Fri, Aug 21, 2020 at 1:25 PM beaumr2 ***@***.***> wrote:
Yeah I think it's busted. It shows -2000mg every time on the self test.
Gotta get a new one
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKWCJMKT76HGWOMIYVTSB3J4XANCNFSM4N4V4CIQ>
.
|
So I bought that but am now having new problems. Here's my wiring, same as I had it with the old MPU9250: VCC-> 3V3 And I get this error: Is there any code that needs to change with this new MPU9250? |
Sorry this is the error, left off the last bit: MPU9250 9-axis motion sensor... |
So you are using a Dragonfly board? I2C is pins 20/21.
What happens when you use an appropriate sketch like this
<https://github.com/kriswiner/Dragonfly/tree/master/MPU9250Optimized> one?
…On Sun, Aug 30, 2020 at 5:50 PM beaumr2 ***@***.***> wrote:
So I bought that but am now having new problems. Here's my wiring, same as
I had it with the old MPU9250:
VCC-> 3V3
GND->GND
Pin 29 -> SCL
Pin 28 -> SDA
Pin 9 -> INT
And I get this error:
MPU9250 9-axis motion sensor...
MPU9250 I AM 10 I should be 71
Could not connect to MPU9250
Is there any code that needs to change with this new MPU9250?
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKXR3XEUC7JZRWRLGITSDLXUTANCNFSM4N4V4CIQ>
.
|
I'm using the dragonfly STM32L476. It's works fine with the old MPU9250 I linked but not this one. And yes, I'm using that code |
3.3V on both SCL and SDA pins |
Very confused here.
What are your SDA/SCL connections?
Should be drop-dead simple to make this work.
Maybe a picture or sketch to at least make sure you have the sensor board
connected properly.
…On Sun, Aug 30, 2020 at 6:03 PM beaumr2 ***@***.***> wrote:
3.3V on both SCL and SDA pins
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKTUSQVMHUHOWIOX3GDSDLZGPANCNFSM4N4V4CIQ>
.
|
Here's the full code. Works fine with the old MPU9250 and same wiring. Can't connect to the one you recently linked for some reason /* MPU9250 Basic Example Code
Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, This version uses the MPU9250 interrupt instead of polling and gets up to 13.5 kHz sensor fusion rates using the Madgwick algorithm. Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board. SDA and SCL have 4K7 pull-up resistors (to 3.3V). */ #include "Wire.h" // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in #define SELF_TEST_X_GYRO 0x00 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain #define SELF_TEST_X_ACCEL 0x0D #define SELF_TEST_A 0x10 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms #define FIFO_EN 0x23 // Define I2C addresses of MPU9250 #define AHRS true // set to false for basic data read // Set initial input parameters enum Gscale { enum Mscale { // Specify sensor full scale // Pin definitions //int myLed = 13; // green led int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro // global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System) uint32_t delt_t = 0; // used to control display output rate float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values //All measurements in inches, weights in lbs double MaxRoll = 0; #include <LiquidCrystal.h> const int switchPin = 6; void setup() // Set up the interrupt pin, it's set as active high, push-pull // Read the WHO_AM_I register, this is a good test of communication if (c == 0x71) // WHO_AM_I should always be 0x68
// get sensor resolutions, only need to do this once calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers initMPU9250(); // Read the WHO_AM_I register of the magnetometer, this is a good test of communication // Get magnetometer calibration from AK8963 ROM magcalMPU9250(magBias, magScale); if(SerialDebug) { } CGx = PW * TW / W; Serial.print("Your x center of gravity is: "); LRTheta = atan2(CGx, CGz) * RAD_TO_DEG; lcd.begin(16, 2); void loop()
// readGyroData(gyroCount); // Read the x/y/z adc values
} Now = micros(); sum += deltat; // sum for averaging filter update rate
// the magnetometer z-axis (+ down) is misaligned with z-axis (+ up) of accelerometer and gyro!
*/ // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz"); if(abs(pitch) > MaxPitch && millis() > 100000) {
lcd.setCursor(0, 0); //=================================================================================================================== void myinthandler() Wire.transfer(MPU9250_ADDRESS, &subAddress, 1, &rawMPU9250Data[0], 14, true, mywirehandler1); void mywirehandler1(uint8_t status) Wire.transfer(AK8963_ADDRESS, &subAddress, 1, &rawAK8963Data[0], 8, true, mywirehandler2); void mywirehandler2(uint8_t status) void getMres() { void getGres() { void getAres() { void readMPU9250Data(int16_t * destination) } void readAK8963Data(int16_t * destination) void readAccelData(int16_t * destination) void readGyroData(int16_t * destination) void readMagData(int16_t * destination) int16_t readTempData() void initAK8963(float * destination) void initMPU9250() // get stable time source // Configure Gyro and Thermometer // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) // Set gyroscope full scale range // Set accelerometer full-scale range configuration // Set accelerometer sample rate configuration // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates // Configure Interrupts and Bypass Enable void magcalMPU9250(float * dest1, float * dest2) //Serial.println("Mag Calibration: Wave device in a figure eight until done!"); // shoot for ~fifteen seconds of mag data // Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
//Serial.println("Mag Calibration done!"); // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average // reset device // get stable time source; Auto select clock source to be PLL gyroscope reference if ready // Configure device for bias calculation // Configure MPU6050 gyro and accelerometer for bias calculation uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO // At end of sample accumulation, turn off FIFO sensor read for (ii = 0; ii < packet_count; ii++) {
} if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup // Push gyro biases to hardware registers // Output scaled gyro biases for display in the main program // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers for(ii = 0; ii < 3; ii++) { // Construct total accelerometer bias, including calculated average accelerometer bias from above data[0] = (accel_bias_reg[0] >> 8) & 0xFF; // Apparently this is not working for the acceleration biases in the MPU-9250 // Output scaled accelerometer biases for display in the main program // Accelerometer and gyroscope self test; check calibration wrt factory settings writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings // Configure the accelerometer for self-test for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings // Configure the gyro and accelerometer for normal operation // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg // Retrieve factory self-test value from self-test code reads // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response } // I2C read/write functions for the MPU9250 sensors
|
Wow, just wow. What the heck is that mess?
Do you know they make machined pin headers like this
<https://www.peconnectors.com/male-pin-headers-breakaway/> that you can use
to solder to the breakout board? Probably get these on Sparkfun or Adafruit
too.
Sticking wires into the PTHs of the board is not going to do it.
They make female versions so you could mount the board like this
<https://github.com/kriswiner/IIS3DWB>.
Or at least you could use a breadboard like this
<https://github.com/kriswiner/LSM6DSO>.
What you have there is a rats nest that will never work, or never work
reliably as you are demonstrating....
…On Sun, Aug 30, 2020 at 6:12 PM beaumr2 ***@***.***> wrote:
Here's the full code. Works fine with the old MPU9250 and same wiring.
Can't connect to the one you recently linked for some reason
/* MPU9250 Basic Example Code
*
- MAKE SURE TO PLUG IN MAGNETIC DECLINATION OF YOUR LOCATION
- AND SAVE MAGNETIC CALIBRATION VALUES
by: Kris Winer
date: May 1, 2016
license: Beerware - Use this code however you'd like. If you
find it useful you can buy me a beer some time.
Demonstrate basic MPU-9250 functionality including parameterizing the
register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data
out.
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony
filter algorithms.
This version uses the MPU9250 interrupt instead of polling and gets up to
13.5 kHz sensor fusion rates using the Madgwick algorithm.
Sketch runs on the 3.3 V Dragonfly STM32L476 Breakout Board.
SDA and SCL have 4K7 pull-up resistors (to 3.3V).
*/
#include "Wire.h"
#define Serial SerialUSB // might not be needed in future
// See also MPU-9250 Register Map and Descriptions, Revision 4.0,
RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
// above document; the MPU9250 and MPU9150 are virtually identical but the
latter has a different register map
//
//Magnetometer Registers
#define AK8963_ADDRESS 0x0C
#define WHO_AM_I_AK8963 0x00 // should return 0x48
#define INFO 0x01
#define AK8963_ST1 0x02 // data ready status bit 0
#define AK8963_XOUT_L 0x03 // data
#define AK8963_XOUT_H 0x04
#define AK8963_YOUT_L 0x05
#define AK8963_YOUT_H 0x06
#define AK8963_ZOUT_L 0x07
#define AK8963_ZOUT_H 0x08
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status
bit 2
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001),
self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC 0x0C // Self test control
#define AK8963_I2CDIS 0x0F // I2C disable
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
#define SELF_TEST_X_GYRO 0x00
#define SELF_TEST_Y_GYRO 0x01
#define SELF_TEST_Z_GYRO 0x02
/*#define X_FINE_GAIN 0x03 // [7:0] fine gain
#define Y_FINE_GAIN 0x04
#define Z_FINE_GAIN 0x05
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC 0x07
#define YA_OFFSET_H 0x08
#define YA_OFFSET_L_TC 0x09
#define ZA_OFFSET_H 0x0A
#define ZA_OFFSET_L_TC 0x0B */
#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E
#define SELF_TEST_Z_ACCEL 0x0F
#define SELF_TEST_A 0x10
#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
#define XG_OFFSET_L 0x14
#define YG_OFFSET_H 0x15
#define YG_OFFSET_L 0x16
#define ZG_OFFSET_H 0x17
#define ZG_OFFSET_L 0x18
#define SMPLRT_DIV 0x19
#define CONFIG 0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define ACCEL_CONFIG2 0x1D
#define LP_ACCEL_ODR 0x1E
#define WOM_THR 0x1F
#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt
generation, 1 kHz rate, LSB = 1 ms
#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion
interrupt generation, 16 Hz rate, LSB = 64 ms
#define FIFO_EN 0x23
#define I2C_MST_CTRL 0x24
#define I2C_SLV0_ADDR 0x25
#define I2C_SLV0_REG 0x26
#define I2C_SLV0_CTRL 0x27
#define I2C_SLV1_ADDR 0x28
#define I2C_SLV1_REG 0x29
#define I2C_SLV1_CTRL 0x2A
#define I2C_SLV2_ADDR 0x2B
#define I2C_SLV2_REG 0x2C
#define I2C_SLV2_CTRL 0x2D
#define I2C_SLV3_ADDR 0x2E
#define I2C_SLV3_REG 0x2F
#define I2C_SLV3_CTRL 0x30
#define I2C_SLV4_ADDR 0x31
#define I2C_SLV4_REG 0x32
#define I2C_SLV4_DO 0x33
#define I2C_SLV4_CTRL 0x34
#define I2C_SLV4_DI 0x35
#define I2C_MST_STATUS 0x36
#define INT_PIN_CFG 0x37
#define INT_ENABLE 0x38
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
#define INT_STATUS 0x3A
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO 0x63
#define I2C_SLV1_DO 0x64
#define I2C_SLV2_DO 0x65
#define I2C_SLV3_DO 0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET 0x68
#define MOT_DETECT_CTRL 0x69
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2 0x6C
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start
address in specified DMP bank
#define DMP_REG 0x6F // Register in DMP from which to read or to which to
write
#define DMP_REG_1 0x70
#define DMP_REG_2 0x71
#define FIFO_COUNTH 0x72
#define FIFO_COUNTL 0x73
#define FIFO_R_W 0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H 0x77
#define XA_OFFSET_L 0x78
#define YA_OFFSET_H 0x7A
#define YA_OFFSET_L 0x7B
#define ZA_OFFSET_H 0x7D
#define ZA_OFFSET_L 0x7E
// Define I2C addresses of MPU9250
#define ADO 0
#if ADO
#define MPU9250_ADDRESS 0x69 // Device address when ADO = 1
#define AK8963_ADDRESS 0x0C // Address of magnetometer
#else
#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0
#define AK8963_ADDRESS 0x0C // Address of magnetometer
#endif
#define AHRS true // set to false for basic data read
#define SerialDebug true // set to true to get Serial output for debugging
// Set initial input parameters
enum Ascale {
AFS_2G = 0,
AFS_4G,
AFS_8G,
AFS_16G
};
enum Gscale {
GFS_250DPS = 0,
GFS_500DPS,
GFS_1000DPS,
GFS_2000DPS
};
enum Mscale {
MFS_14BITS = 0, // 0.6 mG per LSB
MFS_16BITS // 0.15 mG per LSB
};
// Specify sensor full scale
uint8_t Gscale = GFS_250DPS;
uint8_t Ascale = AFS_2G;
uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit
magnetometer resolution
uint8_t Mmode = 0x06; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer
data read
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
// Pin definitions
int intPin = 9; // When mounted on back pads SDA = 42, SCL = 43, and INT =
41
bool newData = false;
uint8_t rawMPU9250Data[14];
uint8_t rawAK8963Data[8];
//int myLed = 13; // green led
int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the
MPU9250 accel/gyro
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor
output
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag
bias
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0,
0, 0}, magScale[3] = {0, 0, 0}; // Bias corrections for gyro and
accelerometer
int16_t tempCount; // temperature raw count output
float temperature; // Stores the real internal chip temperature in degrees
Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test
// global constants for 9 DoF fusion and AHRS (Attitude and Heading
Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement
error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift
in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response
speed.
// In the original Madgwick study, beta of 0.041 (corresponding to
GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds
to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output,
not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the
response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is
essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges,
usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and
fusion scheme.
float beta = sqrtf(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrtf(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the
other free parameter in the Madgwick scheme usually set to a small or zero
value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony
filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll;
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter
schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration
interval
uint32_t Now = 0; // used to calculate integration interval
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest
sensor data values
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for
Mahony method
//All measurements in inches, weights in lbs
const double WB = 2.5005; //Wheelbase
const double TW = 1.868; //Track width
const double HH = .4455; //Hub height (aka axle height)
const double RH = .642; //Raised height
const double W = 97.93; //Total weight
const double PW = 48.71; //Passenger weight
const double RW = 51.54; //Rear weight
const double RWr = 55.65; //Rear weight when raise
double CGx = 0; //Center of Gravity from driver's side tire outer edge
double CGy = 0; //CoG behind front axle
double CGz = 0; //CoG from ground
double LRTheta = 0; //Left rollover angle
double RRTheta = 0; //Right rollover angle
double FRTheta = 0; //Front rollover angle
double ARTheta = 0; //Aft (rear) rollover angle
double MaxRoll = 0;
double MaxPitch = 0;
#define RAD_TO_DEG 57.295779513082320876798154814105 //180 divided by pi
#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 7, 5, 4, 3, 2);
const int switchPin = 6;
int switchState = 0;
int prevSwitchState = 0;
void setup()
{
Serial.begin(115200);
delay(1000);
Wire.begin(TWI_PINS_20_21); // set master mode
Wire.setClock(400000); // I2C frequency at 400 kHz
delay(1000);
// Set up the interrupt pin, it's set as active high, push-pull
pinMode(intPin, INPUT);
// pinMode(myLed, OUTPUT);
// digitalWrite(myLed, LOW); // start with green led on (active LOW)
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I
register for MPU-9250
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX);
Serial.print(" I should be "); Serial.println(0x71, HEX);
delay(1000);
if (c == 0x71) // WHO_AM_I should always be 0x68
{
Serial.println("MPU9250 is online...");
MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
/*Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);
*/
// get sensor resolutions, only need to do this once
getAres();
getGres();
getMres();
calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and
accelerometers, load biases in bias registers
/
*accelBias[0] = 0; accelBias[1] = 0; accelBias[2] = 1; /*
gyroBias[0] = -4.82;
gyroBias[1] = -10.18;
gyroBias[2] = -.64;*/
//USE THIS instead of calibrating accelerometer and gyroscope every time
//Because the Jeep shaking while running will affect it.
//So calibrate once while on level ground as it sits in the Jeep then
store those values
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]);
Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]);
Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);
initMPU9250();
Serial.println("MPU9250 initialized for active data mode...."); //
Initialize device for active mode read of acclerometer, gyroscope, and
temperature
// Read the WHO_AM_I register of the magnetometer, this is a good test of
communication
byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I
register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX);
Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);
// Get magnetometer calibration from AK8963 ROM
initAK8963(magCalibration); Serial.println("AK8963 initialized for active
data mode...."); // Initialize device for active mode read of magnetometer
magcalMPU9250(magBias, magScale);
//Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]);
Serial.println(magBias[1]); Serial.println(magBias[2]);
//Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]);
Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data
if(SerialDebug) {
/* Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value ");
Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value ");
Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value ");
Serial.println(magCalibration[2], 2);
*/
attachInterrupt(intPin, myinthandler, RISING); // define interrupt for INT
pin output of MPU9250
}
}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
CGx = PW * TW / W;
CGy = RW * WB / W;
CGz = HH + ((RWr - RW) / W) * ((sqrt((sq(WB))-(sq(RH)))*WB) / RH);
Serial.print("Your x center of gravity is: ");
Serial.println(CGx);
Serial.print("Your y center of gravity is: ");
Serial.println(CGy);
Serial.print("Your z center of gravity is: ");
Serial.println(CGz);
LRTheta = atan2(CGx, CGz) * RAD_TO_DEG;
RRTheta = atan2(TW-CGx, CGz) * RAD_TO_DEG;
FRTheta = atan2(CGy, CGz) * RAD_TO_DEG;
ARTheta = atan2(WB-CGy, CGz) * RAD_TO_DEG;
lcd.begin(16, 2);
lcd.setCursor(0, 0);
lcd.print("Left rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(LRTheta);
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Right rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(RRTheta);
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Front rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(FRTheta);
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Rear rollover");
lcd.setCursor(0, 1);
lcd.print("angle is: ");
lcd.print(ARTheta);
delay(2000);
lcd.clear();
pinMode(switchPin, INPUT);
}
void loop()
{
// If intPin goes high, all data registers have new data
if(newData == true) { // On interrupt, read data
newData = false; // reset newData flag
readMPU9250Data(MPU9250Data); // INT cleared on any read
// readAccelData(accelCount); // Read the x/y/z adc values
// Now we'll calculate the accleration value into actual g's
ax = (float)MPU9250Data[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)MPU9250Data[1]*aRes - accelBias[1];
az = (float)MPU9250Data[2]*aRes - accelBias[2];
// readGyroData(gyroCount); // Read the x/y/z adc values
// Calculate the gyro value into actual degrees per second
gx = (float)MPU9250Data[4]*gRes; // get actual gyro value, this depends on scale being set
gy = (float)MPU9250Data[5]*gRes;
gz = (float)MPU9250Data[6]*gRes;
readAK8963Data(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];
mx *= magScale[0];
my *= magScale[1];
mz *= magScale[2];
}
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time
elapsed since last filter update
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
// Sensors x (y)-axis of the accelerometer/gyro is aligned with the y (x)-axis of the magnetometer;
// the magnetometer z-axis (+ down) is misaligned with z-axis (+ up) of
accelerometer and gyro!
// We have to make some allowance for this orientation mismatch in feeding
the output to the quaternion filter.
// We will assume that +y accel/gyro is North, then x accel/gyro is East.
So if we want te quaternions properly aligned
// we need to feed into the madgwick function Ay, Ax, -Az, Gy, Gx, -Gz,
Mx, My, and Mz. But because gravity is by convention
// positive down, we need to invert the accel data, so we pass -Ay, -Ax,
Az, Gy, Gx, -Gz, Mx, My, and Mz into the Madgwick
// function to get North along the accel +y-axis, East along the accel
+x-axis, and Down along the accel -z-axis.
// This orientation choice can be modified to allow any convenient
(non-NED) orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
MadgwickQuaternionUpdate(-ay, -ax, az, gy*PI/180.0f, gx*PI/180.0f, -gz
*PI/180.0f, mx, my, mz); // if(passThru)MahonyQuaternionUpdate(-ay, -ax,
az, gy*PI/180.0f, gx*PI/180.0f, -gz*PI/180.0f, mx, my, mz);
// Serial print and/or display at 1 s rate independent of data rates
delt_t = millis() - count;
if (delt_t > 500) { // update serial once per half-second independent of read rate
if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
/*
Serial.print("mx = "); Serial.print( (int)mx );
Serial.print(" my = "); Serial.print( (int)my );
Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
*/
// tempCount = readTempData(); // Read the gyro adc values
temperature = ((float) MPU9250Data[3]) / 333.87 + 21.0; // Gyro chip
temperature in degrees Centigrade
// Print temperature in degrees Centigrade
//Serial.print("Gyro temperature is "); Serial.print(temperature, 1);
Serial.println(" degrees C"); // Print T values to tenths of s degree C
}
// Define output variables from updated quaternion---these are Tait-Bryan
angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or
true North if corrected for local declination, looking down on the sensor
positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the
Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up
is positive roll.
// These arise from the definition of the homogeneous rotation matrix
constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is,
the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw,
pitch, and then roll.
// For more see
http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
which has additional links.
//Software AHRS:
yaw = atan2f(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1]
- q[2] * q[2] - q[3] * q[3]);
pitch = -asinf(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2f(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] *
q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw += 0.13f; // .13 is the mag dec for Missouri Example: Declination at
Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
so you would use 13.8
if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360
roll *= 180.0f / PI;
if(SerialDebug) {
Serial.print("Pitch & Roll: ");
//Serial.print(yaw, 2);
//Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
// Serial.print("rate = "); Serial.print((float)sumCount/sum, 2);
Serial.println(" Hz");
if(abs(pitch) > MaxPitch && millis() > 100000) {
MaxPitch = abs(pitch);
}
else if (abs(roll) > MaxRoll && millis() > 100000) {
MaxRoll = abs(roll);
}
else {}
Serial.println("Maximum Pitch & Roll");
Serial.print(MaxPitch, 2);
Serial.print(",");
Serial.println(MaxRoll, 2);
}
count = millis();
sumCount = 0;
sum = 0;
}
lcd.setCursor(0, 0);
lcd.print("Pitch: ");
lcd.print(pitch);
lcd.setCursor(0, 1);
lcd.print("Roll: ");
lcd.print(roll);
delay(100);
switchState = digitalRead(switchPin);
if (switchState != prevSwitchState) {
if (switchState == LOW) {
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Max Pitch:");
lcd.print(MaxPitch);
lcd.setCursor(0,1);
lcd.print("Max Roll:");
lcd.print(MaxRoll);
delay(5000);
}
}
prevSwitchState = switchState;
}
//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope,
magnetometer, and temperature data
//===================================================================================================================
void myinthandler()
{
uint8_t subAddress = ACCEL_XOUT_H;
Wire.transfer(MPU9250_ADDRESS, &subAddress, 1, &rawMPU9250Data[0], 14,
true, mywirehandler1);
}
void mywirehandler1(uint8_t status)
{
uint8_t subAddress = AK8963_ST1;
Wire.transfer(AK8963_ADDRESS, &subAddress, 1, &rawAK8963Data[0], 8, true,
mywirehandler2);
}
void mywirehandler2(uint8_t status)
{
newData = true;
}
void getMres() {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
case MFS_14BITS:
mRes = 10.*4912./8190.; // Proper scale to return milliGauss
break;
case MFS_16BITS:
mRes = 10.*4912./32760.0; // Proper scale to return milliGauss
break;
}
}
void getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
2-bit value:
case GFS_250DPS:
gRes = 250.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_1000DPS:
gRes = 1000.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}
void getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
2-bit value:
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
}
}
void readMPU9250Data(int16_t * destination)
{
destination[0] = ((int16_t)rawMPU9250Data[0] << 8) | rawMPU9250Data[1] ;
// Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawMPU9250Data[2] << 8) | rawMPU9250Data[3] ;
destination[2] = ((int16_t)rawMPU9250Data[4] << 8) | rawMPU9250Data[5] ;
destination[3] = ((int16_t)rawMPU9250Data[6] << 8) | rawMPU9250Data[7] ;
destination[4] = ((int16_t)rawMPU9250Data[8] << 8) | rawMPU9250Data[9] ;
destination[5] = ((int16_t)rawMPU9250Data[10] << 8) | rawMPU9250Data[11] ;
destination[6] = ((int16_t)rawMPU9250Data[12] << 8) | rawMPU9250Data[13] ;
}
void readAK8963Data(int16_t * destination)
{
if(rawAK8963Data[0] & 0x01) { // wait for magnetometer data ready bit to
be set
uint8_t c = rawAK8963Data[7]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then
report data
destination[0] = ((int16_t)rawAK8963Data[2] << 8) | rawAK8963Data[1] ; //
Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawAK8963Data[4] << 8) | rawAK8963Data[3] ; //
Data stored as little Endian
destination[2] = ((int16_t)rawAK8963Data[6] << 8) | rawAK8963Data[5] ;
}
}
}
void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six
raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB
and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six
raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB
and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void readMagData(int16_t * destination)
{
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here,
must read ST2 at end of data acquisition
if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer
data ready bit to be set
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six
raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then
report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB
and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored
as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
}
int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two
raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB
into a 16-bit value
}
void initAK8963(float * destination)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10);
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-,
y-, and z-axis calibration values
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis
sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL
register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010
for 8 Hz and 0110 for 100 Hz sample rates
writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set
magnetometer data resolution and sample ODR
delay(10);
}
void initMPU9250()
{
// wake up device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6),
enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source
to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz,
respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor
fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for
both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz
(!), 8 kHz, or 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Use a 1000 Hz rate; a
rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and GFS_SEL are 0 - 3, so 2-bit values are
left-shifted into positions 4:3
uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current
GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x03; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear GS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to
bits 1:0 of GYRO_CONFIG
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG
value to register
// Set accelerometer full-scale range configuration
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG
register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG
register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by
choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2
register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2
register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH
until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional
chips
// can join the I2C bus and all can be controlled by the Arduino as master
// writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12); // INT is 50 microsecond
pulse and any read to clear
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0)
interrupt
delay(100);
}
void magcalMPU9250(float * dest1, float * dest2)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767,
32767}, mag_temp[3] = {0, 0, 0};
//Serial.println("Mag Calibration: Wave device in a figure eight until
done!");
//delay(4000);
//COMMENTED THE ABOVE 2 LINES OUT BECAUSE NO NEED FOR MAG IF NOT USING YAW
// shoot for ~fifteen seconds of mag data
if(Mmode == 0x02) sample_count = 128; // at 8 Hz ODR, new mag data is
available every 125 ms
if(Mmode == 0x06) sample_count = 1500; // at 100 Hz ODR, new mag data is
available every 10 ms
for(ii = 0; ii < sample_count; ii++) {
readMagData(mag_temp); // Read the mag data
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
if(Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available
every 125 ms
if(Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available
every 10 ms
}
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]);
Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]);
Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]);
Serial.println(mag_min[2]);
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0]; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];
dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;
dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);
//Serial.println("Mag Calibration done!");
}
// Function which accumulates gyro and accelerometer data after device
initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into
accelerometer and gyro bias registers.
void calibrateMPU9250(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z,
data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7
reset bit; toggle reset device
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope
reference if ready
// else use the internal oscillator, bits 2:0 = 001
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock
source
writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C
master modes
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to
250 degrees per second, maximum sensitivity
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer
full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and
accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and
accelerometer sensors for FIFO
readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample
count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and
accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for
averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form
signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average
count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} //
Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers,
which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB
per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign
on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware
accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer
biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved
since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias
input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory
accelerometer trim biases
readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory
accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of
lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each
accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature
compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average
accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged
accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit
when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit
when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit
when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the
MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
// writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
// writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
// writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
// writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
// writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
// writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
// Output scaled accelerometer biases for display in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
// Accelerometer and gyroscope self test; check calibration wrt factory
settings
void MPU9250SelfTest(float * destination) // Should return percent
deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
float factoryTrim[6];
uint8_t FS = 0;
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1
kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz
and DLPF to 92 Hz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, FS<<3); // Set full scale range
for the gyro to 250 dps
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate
to 1 kHz and bandwidth to 92 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, FS<<3); // Set full scale range
for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro
and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six
raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn
the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn
the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as
average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all
three axes and set accelerometer range to +/- 2 g
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all
three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro
and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six
raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn
the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn
the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as
average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis
accel self-test results
selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis
accel self-test results
selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis
accel self-test results
selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro
self-test results
selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro
self-test results
selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro
self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)
*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim
calculation factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 ,
((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)
*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim
calculation factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 ,
((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)
*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim
calculation factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 ,
((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory
Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i] -
100.; // Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3] -
100.; // Report percent differences
}
}
// I2C read/write functions for the MPU9250 sensors
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
uint8_t temp[2];
temp[0] = subAddress;
temp[1] = data;
Wire.transfer(address, &temp[0], 2, NULL, 0);
}
uint8_t readByte(uint8_t address, uint8_t subAddress) {
uint8_t temp[1];
Wire.transfer(address, &subAddress, 1, &temp[0], 1);
return temp[0];
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
Wire.transfer(address, &subAddress, 1, dest, count);
}
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKSENBCFXC4K2RROXLDSDL2JVANCNFSM4N4V4CIQ>
.
|
I get that it's a rats nest but trust me that's not the problem Using this board, same wiring, it works fine. Only problem is one axis of the accelerometer is junk as we talked about a few days ago And using this board I get the error that it can't connect |
I shouldn't need to change any code switching from one board to the other right? |
Then at least use dupont jumpers with j-hooks for the connections. I
sometimes just use Dupont jumpers too to test function but then I dont seem
to have these kinds of problems either.
My recommendation is to solder machine pin headers onto the sensor board
and Dragonfly, use 24 - 26 gauge wire to connect on a breadboard and then
test. Guaranteed to work.
…On Sun, Aug 30, 2020 at 6:35 PM beaumr2 ***@***.***> wrote:
I get that it's a rats nest but trust me that's not the problem
Using this board, same wiring, it works fine. Only problem is one axis of
the accelerometer is junk as we talked about a few days ago
https://smile.amazon.com/gp/product/B01I1J0Z7Y/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1
And using this board I get the error that it can't connect
https://www.tindie.com/products/onehorse/ultimate-sensor-fusion-solution-mpu9250/
I know the wires are making good connections. Tested them with voltmeter
and have run the code over and over doing my best to make sure there's
contact (don't want to solder until I confirm it works)
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKQBWDW2KJGKTHECEVDSDL45HANCNFSM4N4V4CIQ>
.
|
Why should you?
I suspect that your connections are not good enough.
…On Sun, Aug 30, 2020 at 6:38 PM beaumr2 ***@***.***> wrote:
I shouldn't need to change any code switching from one board to the other
right?
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKQOI7IVDWLG3IY2PIDSDL5IJANCNFSM4N4V4CIQ>
.
|
These pictures enough to convince you? Black = SDA/Pin 20, Yellow = SCL/Pin 21, Green = 3V3/3V3, Red = GND/GND I was mistaken about Pin 29->SCL and 28-> SDA. They're actually pins 21 and 20, respectively. I said 29/28 because they're right under the pin labeled 30 It's definitely not the wiring. I've rewired the old MPU9250 twice and it immediately works. With the new MPU9250 no matter how much i try to ensure the wires are making contact it never works |
Also my bad, didn't connect the INT pin there to pin 9. Same result with it connected |
Don't know what to tell you. I test each of the MPU9250 boards before I
send them out. It is guaranteed to work unless it is not connected
correctly (which I suspect) or you are foo-barring the sketch.
If you can't read the WHOAMI from the MPU9250 then it is not connected
properly.
…On Mon, Aug 31, 2020 at 2:36 PM beaumr2 ***@***.***> wrote:
Also my bad, didn't connect the INT pin there to pin 9. Same result with
it connected
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKRRZGHGBHCZVWLUFADSDQJXPANCNFSM4N4V4CIQ>
.
|
Now that I can see your board I see that it is not an MPU9250 breakout
board but an EM7180 coprocessor managing an MPU9250 and BMP280, right?
You should see the EM7180 at 0x28.
Maybe you should try the appropriate
<https://github.com/gregtomasch/EM7180_SENtral_Calibration> sketch?
…On Tue, Sep 1, 2020 at 1:44 PM beaumr2 ***@***.***> wrote:
[image: IMG_0450]
<https://user-images.githubusercontent.com/29678274/91904020-d35c8a80-ec69-11ea-85b8-a460d7963c0e.JPG>
[image: IMG_9634]
<https://user-images.githubusercontent.com/29678274/91904026-d6577b00-ec69-11ea-9a25-3c1a8dd6c90f.JPG>
—
You are receiving this because you commented.
Reply to this email directly, view it on GitHub
<#421 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABTDLKW6UBLK7JP6DK3SDA3SDVMJBANCNFSM4N4V4CIQ>
.
|
Yep that was the issue. Working now, just need to tackle the calibration part of it |
Thanks so much for all your help!!! Got my project complete, only 3 months later :) Here's a video if you're curious. Anyway, thanks so much again. You've been great at dealing with my stupidity |
Hi Kris
First of all, thank you for this.
So I'm using your code and having trouble with the QuaternionFilter. The accelerometer, gyroscope, and magnetometer values are stable but my q values vary wildly (and seem to want to alternate between positive and negative) which is messing up my pitch, roll, and yaw.
Do you have any idea what might be causing this? I'm using Arduino Uno and your code. I can paste the code if needed but here's the output:
x-axis self test: acceleration trim within : 0.7% of factory value
y-axis self test: acceleration trim within : -0.5% of factory value
z-axis self test: acceleration trim within : 2.3% of factory value
x-axis self test: gyration trim within : 34.6% of factory value
y-axis self test: gyration trim within : 14.5% of factory value
z-axis self test: gyration trim within : 0.8% of factory value
accel biases (mg)
-318.97
370.91
-494.32
gyro biases (dps)
-4.59
-9.87
-0.75
MPU9250 initialized for active data mode....
AK8963 I AM 48 I should be 48
AK8963 initialized for active data mode....
AK8963 mag biases (mG)
71.04
122.43
-36.90
AK8963 mag scale (mG)
1.01
1.03
0.96
Calibration values:
X-Axis sensitivity adjustment value 1.16
Y-Axis sensitivity adjustment value 1.17
Z-Axis sensitivity adjustment value 1.13
ax = 0.73 ay = 0.37 az = 995.42 mg
gx = -0.03 gy = -0.23 gz = -0.17 deg/s
mx = 0 my = 0 mz = 0 mG
q0 = 1.00 qx = 0.00 qy = 0.00 qz = 0.00
Gyro temperature is 34.0 degrees C
Yaw, Pitch, Roll: 13.80, 0.00, 0.00
Grav_x, Grav_y, Grav_z: 0.00, 0.00, 1000.00 mg
Lin_ax, Lin_ay, Lin_az: 0.73, 0.37, -4.58 mg
rate = 1.04 Hz
ax = 0.55 ay = -1.34 az = 995.30 mg
gx = 0.05 gy = 0.05 gz = -0.12 deg/s
mx = 27111 my = 164 mz = 35 mG
q0 = 0.64 qx = -0.00 qy = 0.00 qz = -0.77
Gyro temperature is 34.1 degrees C
Yaw, Pitch, Roll: 273.04, 0.00, -0.13
Grav_x, Grav_y, Grav_z: 2.33, 0.08, 1000.00 mg
Lin_ax, Lin_ay, Lin_az: -1.78, -1.43, -4.70 mg
rate = 4.87 Hz
ax = 376.28 ay = -1855.29 az = 494.32 mg
gx = 0.05 gy = 0.05 gz = -0.12 deg/s
mx = 27111 my = 164 mz = 35 mG
q0 = 0.51 qx = -0.33 qy = 0.60 qz = -0.52
Gyro temperature is 21.1 degrees C
Yaw, Pitch, Roll: 268.09, 16.15, -86.28
Grav_x, Grav_y, Grav_z: 958.51, 278.15, 62.35 mg
Lin_ax, Lin_ay, Lin_az: -582.23, -2133.44, 431.97 mg
rate = 4.87 Hz
ax = 376.28 ay = -1855.29 az = 494.32 mg
gx = 0.05 gy = 0.05 gz = -0.12 deg/s
mx = 27111 my = 164 mz = 35 mG
q0 = 0.41 qx = -0.17 qy = -0.18 qz = -0.88
Gyro temperature is 21.1 degrees C
Yaw, Pitch, Roll: 241.13, -26.40, 10.91
Grav_x, Grav_y, Grav_z: -169.48, -444.57, 879.57 mg
Lin_ax, Lin_ay, Lin_az: 545.76, -1410.72, -385.24 mg
rate = 4.87 Hz
The text was updated successfully, but these errors were encountered: