-
Notifications
You must be signed in to change notification settings - Fork 167
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
LIB: Add mindspore backend #169
Open
chou-shun
wants to merge
5
commits into
kubeedge:main
Choose a base branch
from
chou-shun:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 2 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
d7ee67c
LIB: Add mindspore backend
a7f92a0
EXAMPLES: A resnet example using mindspore backend
chou-shun 77aaded
EXAMPLES: Optimize some format problems
chou-shun 6dbc799
bugfix
chou-shun 82d614b
Merge remote-tracking branch 'upstream/main'
chou-shun File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
# Resnet Example with Mindspore Backend | ||
This document describes how to use the mindspore backend to train Resnet-50 network with the cifar-10 dataset | ||
|
||
## Preparatory Stage | ||
### Prepare Dataset | ||
In this example, We need to prepare the cifar10 dataset in advance, and put it into `/home/sedna/examples/backend/mindspore/resnet/` | ||
```bash | ||
cd /home/sedna/examples/backend/mindspore/resnet | ||
wget http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz | ||
tar -zxvf cifar-10-binary.tar.gz | ||
``` | ||
### Parameters | ||
you can change the parameters of the model in `src/config.py` | ||
|
||
## Modeling Stage | ||
This example support CPU and NPU, you can follow these steps for training, testing and inference | ||
### Train | ||
> * CPU | ||
>```bash | ||
> bash scripts/run_standalone_train_cpu.sh [DATASET_PATH] [MODEL_SAVE_PATH] | ||
> # model_save_path must be ABSOLUTE PATH | ||
> # The log message would be showed in the terminal | ||
> # The ckpt file would be saved in [MODEL_SAVE_PATH] | ||
>``` | ||
> * NPU | ||
>```bash | ||
> bash scripts/run_standalone_train.sh [DATASET_PATH] [MODEL_SAVE_PATH] | ||
> # [MODEL_SAVE_PATH] must be ABSOLUTE PATH | ||
> # The log message would be saved to scripts/train/log | ||
> # The ckpt file would be saved in [MODEL_SAVE_PATH] | ||
>``` | ||
###Test | ||
> * CPU | ||
>```bash | ||
> bash scripts/run_test_cpu.sh [DATASET_PATH] [CHECKPOINT_PATH] | ||
> # [CHECKPOINT_PATH] must be ABSOLUTE PATH | ||
> # The log message would be saved to scripts/test/log | ||
>``` | ||
> * NPU | ||
>```bash | ||
> bash scripts/run_test.sh [DATASET_PATH] [CHECKPOINT_PATH] | ||
> # [CHECKPOINT_PATH] must be ABSOLUTE PATH | ||
> # The log message would be saved to scripts/test/log | ||
>``` | ||
###Infer | ||
>```bash | ||
> bash scripts/run_infer.sh [IMAGE_PATH] [CHECKPOINT_PATH] | ||
> # [CHECKPOINT_PATH] must be ABSOLUTE PATH | ||
> # The log message would be saved to scripts/infer/log | ||
>``` | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
44 changes: 44 additions & 0 deletions
44
examples/lib-samples/backend/mindspore/ResNet50/inference.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import argparse | ||
import mindspore as ms | ||
from mindspore import Tensor | ||
import mindspore.dataset.vision.c_transforms as C | ||
import numpy as np | ||
from lib.sedna.backend import set_backend | ||
import cv2 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. import cv2 before sedna |
||
from interface import Estimator | ||
|
||
parser = argparse.ArgumentParser(description="resnet50 infer") | ||
parser.add_argument('--image_path', type=str, default="") | ||
parser.add_argument( | ||
'--device_target', | ||
type=str, | ||
default="Ascend", | ||
choices=( | ||
"Ascend", | ||
"CPU"), | ||
help="Device target, support Ascend, CPU") | ||
parser.add_argument('--checkpoint_path', type=str) | ||
|
||
|
||
def preprocess(): | ||
resize = C.Resize((224, 224)) | ||
rescale = C.Rescale(1.0 / 255.0, 0.0) | ||
normalize = C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]) | ||
transpose = C.HWC2CHW() | ||
return [resize, rescale, normalize, transpose] | ||
|
||
|
||
def main(): | ||
args = parser.parse_args() | ||
img = cv2.imread(args.image_path) | ||
data_preprocess = preprocess() | ||
for method in data_preprocess: | ||
img = method(img) | ||
img = np.expand_dims(img, 0) | ||
data = Tensor(img, ms.float32) | ||
model = set_backend(estimator=Estimator) | ||
return model.predict(data) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
268 changes: 268 additions & 0 deletions
268
examples/lib-samples/backend/mindspore/ResNet50/interface.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
# Copyright 2020 Huawei Technologies Co., Ltd | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""train resnet.""" | ||
import os | ||
import numpy as np | ||
from mindspore import context | ||
from mindspore import Tensor | ||
from mindspore.nn.optim.momentum import Momentum | ||
from mindspore.train.model import Model | ||
from mindspore.context import ParallelMode | ||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | ||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | ||
from mindspore.train.loss_scale_manager import FixedLossScaleManager | ||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||
from mindspore.communication.management import init, get_rank, get_group_size | ||
from mindspore.parallel import set_algo_parameters | ||
import mindspore.nn as nn | ||
import mindspore.common.initializer as weight_init | ||
from src.lr_generator import get_lr | ||
|
||
from src.resnet import resnet50 as resnet | ||
from src.config import config1 as config | ||
from src.dataset import create_dataset1 as create_dataset | ||
|
||
|
||
class Estimator: | ||
def __init__(self) -> None: | ||
self.has_load = False | ||
self.network = None | ||
self.train_network = None | ||
|
||
def train(self, train_data, **kwargs): | ||
args_opt = kwargs.get("args_opt") | ||
target = args_opt.device_target | ||
if target == "CPU": | ||
args_opt.run_distribute = False | ||
|
||
ckpt_save_dir = args_opt.model_save_path | ||
|
||
# init context | ||
if args_opt.run_distribute: | ||
if target == "Ascend": | ||
device_id = int(os.getenv('DEVICE_ID')) | ||
context.set_context( | ||
device_id=device_id, | ||
enable_auto_mixed_precision=True) | ||
context.set_auto_parallel_context( | ||
device_num=args_opt.device_num, | ||
parallel_mode=ParallelMode.DATA_PARALLEL, | ||
gradients_mean=True) | ||
set_algo_parameters(elementwise_op_strategy_follow=True) | ||
context.set_auto_parallel_context( | ||
all_reduce_fusion_config=[85, 160]) | ||
init() | ||
# GPU target | ||
else: | ||
init() | ||
context.set_auto_parallel_context( | ||
device_num=get_group_size(), | ||
parallel_mode=ParallelMode.DATA_PARALLEL, | ||
gradients_mean=True) | ||
if args_opt.net == "resnet50": | ||
context.set_auto_parallel_context( | ||
all_reduce_fusion_config=[85, 160]) | ||
ckpt_save_dir = args_opt.save_checkpoint_path + \ | ||
"ckpt_" + str(get_rank()) + "/" | ||
|
||
# create dataset | ||
dataset = create_dataset( | ||
dataset_path=train_data, | ||
do_train=True, | ||
repeat_num=1, | ||
batch_size=config.batch_size, | ||
target=target, | ||
distribute=args_opt.run_distribute) | ||
step_size = dataset.get_dataset_size() | ||
|
||
# define net | ||
net = resnet(class_num=config.class_num) | ||
|
||
# init weight | ||
if args_opt.pre_trained: | ||
param_dict = load_checkpoint(args_opt.pre_trained) | ||
load_param_into_net(net, param_dict) | ||
else: | ||
for _, cell in net.cells_and_names(): | ||
if isinstance(cell, nn.Conv2d): | ||
cell.weight.set_data( | ||
weight_init.initializer( | ||
weight_init.XavierUniform(), | ||
cell.weight.shape, | ||
cell.weight.dtype)) | ||
if isinstance(cell, nn.Dense): | ||
cell.weight.set_data( | ||
weight_init.initializer( | ||
weight_init.TruncatedNormal(), | ||
cell.weight.shape, | ||
cell.weight.dtype)) | ||
|
||
# init lr | ||
lr = get_lr( | ||
lr_init=config.lr_init, | ||
lr_end=config.lr_end, | ||
lr_max=config.lr_max, | ||
warmup_epochs=config.warmup_epochs, | ||
total_epochs=config.epoch_size, | ||
steps_per_epoch=step_size, | ||
lr_decay_mode=config.lr_decay_mode) | ||
lr = Tensor(lr) | ||
|
||
# define opt | ||
decayed_params = [] | ||
no_decayed_params = [] | ||
for param in net.trainable_params(): | ||
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: | ||
decayed_params.append(param) | ||
else: | ||
no_decayed_params.append(param) | ||
|
||
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay}, | ||
{'params': no_decayed_params}, | ||
{'order_params': net.trainable_params()}] | ||
opt = Momentum( | ||
group_params, | ||
lr, | ||
config.momentum, | ||
loss_scale=config.loss_scale) | ||
# define loss, model | ||
if target == "Ascend": | ||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | ||
loss_scale = FixedLossScaleManager( | ||
config.loss_scale, drop_overflow_update=False) | ||
model = Model( | ||
net, | ||
loss_fn=loss, | ||
optimizer=opt, | ||
loss_scale_manager=loss_scale, | ||
metrics={'acc'}, | ||
amp_level="O2", | ||
keep_batchnorm_fp32=False) | ||
else: | ||
# GPU and CPU target | ||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | ||
|
||
if target != "CPU": | ||
opt = Momentum( | ||
filter( | ||
lambda x: x.requires_grad, | ||
net.get_parameters()), | ||
lr, | ||
config.momentum, | ||
config.weight_decay, | ||
config.loss_scale) | ||
loss_scale = FixedLossScaleManager( | ||
config.loss_scale, drop_overflow_update=False) | ||
# Mixed precision | ||
model = Model( | ||
net, | ||
loss_fn=loss, | ||
optimizer=opt, | ||
loss_scale_manager=loss_scale, | ||
metrics={'acc'}, | ||
amp_level="O2", | ||
keep_batchnorm_fp32=False) | ||
else: | ||
# fp32 training | ||
opt = Momentum( | ||
filter( | ||
lambda x: x.requires_grad, | ||
net.get_parameters()), | ||
lr, | ||
config.momentum, | ||
config.weight_decay) | ||
model = Model( | ||
net, | ||
loss_fn=loss, | ||
optimizer=opt, | ||
metrics={'acc'}) | ||
|
||
# define callbacks | ||
time_cb = TimeMonitor(data_size=step_size) | ||
loss_cb = LossMonitor() | ||
cb = [time_cb, loss_cb] | ||
if config.save_checkpoint: | ||
config_ck = CheckpointConfig( | ||
save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | ||
keep_checkpoint_max=config.keep_checkpoint_max) | ||
ckpt_cb = ModelCheckpoint( | ||
prefix="resnet", | ||
directory=ckpt_save_dir, | ||
config=config_ck) | ||
cb += [ckpt_cb] | ||
|
||
# train model | ||
dataset_sink_mode = target != "CPU" | ||
model.train( | ||
config.epoch_size - config.pretrain_epoch_size, | ||
dataset, | ||
callbacks=cb, | ||
sink_size=dataset.get_dataset_size(), | ||
dataset_sink_mode=dataset_sink_mode) | ||
|
||
def evaluate(self, valid_data, **kwargs): | ||
args_opt = kwargs.get("args_opt") | ||
target = args_opt.device_target | ||
# init context | ||
if target == "Ascend": | ||
device_id = int(os.getenv('DEVICE_ID')) | ||
context.set_context(device_id=device_id) | ||
|
||
# create dataset | ||
dataset = create_dataset( | ||
dataset_path=valid_data, | ||
do_train=False, | ||
batch_size=config.batch_size, | ||
target=target) | ||
|
||
# define net | ||
net = self.network | ||
|
||
# define loss, model | ||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | ||
|
||
# define model | ||
model = Model( | ||
net, | ||
loss_fn=loss, | ||
metrics={ | ||
'top_1_accuracy', | ||
'top_5_accuracy'}) | ||
|
||
# eval model | ||
res = model.eval(dataset) | ||
print("result:", res, "ckpt=", args_opt.checkpoint_path) | ||
|
||
def predict(self, data, class_name): | ||
|
||
# define model | ||
model = Model(self.network) | ||
|
||
# infer data | ||
res = model.predict(data) | ||
softmax = nn.Softmax() | ||
|
||
# get label result | ||
pred_class = class_name[np.argmax(softmax(res[0]))] | ||
print("This image belongs to: ", pred_class) | ||
return pred_class | ||
|
||
def load(self, model_url): | ||
print("load model url: ", model_url) | ||
self.network = resnet(class_num=config.class_num) | ||
param_dict = load_checkpoint(model_url) | ||
load_param_into_net(self.network, param_dict) | ||
self.network.set_train(False) | ||
self.has_load = True |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
maybe change with
from sedna.backend import set_backend
better