Skip to content

Commit

Permalink
refactor(test/sdk): add run-e2e-tune-api.py.
Browse files Browse the repository at this point in the history
Signed-off-by: Electronic-Waste <[email protected]>
  • Loading branch information
Electronic-Waste committed Jul 30, 2024
1 parent 153cdef commit b43f603
Show file tree
Hide file tree
Showing 5 changed files with 242 additions and 138 deletions.
5 changes: 5 additions & 0 deletions test/e2e/v1beta1/scripts/gh-actions/build-load.sh
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ TAG="e2e-test"
VERSION="v1beta1"
CMD_PREFIX="cmd"
SPECIFIED_DEVICE_TYPE_IMAGES=("enas-cnn-cifar10-cpu" "darts-cnn-cifar10-cpu" "pytorch-mnist-cpu")
DEFAULT_IMAGE_FOR_TUNE="docker.io/tensorflow/tensorflow:2.13.0"

IFS="," read -r -a TRIAL_IMAGE_ARRAY <<< "$TRIAL_IMAGES"
IFS="," read -r -a EXPERIMENT_ARRAY <<< "$EXPERIMENTS"
Expand Down Expand Up @@ -162,6 +163,10 @@ for name in "${TRIAL_IMAGE_ARRAY[@]}"; do
run "$name" "examples/$VERSION/trial-images/$name/Dockerfile"
done

# Testing image for tune function
echo -e "\nPulling testing image for tune function..."
docker pull $DEFAULT_IMAGE_FOR_TUNE

echo -e "\nCleanup Build Cache...\n"
docker buildx prune -f

Expand Down
139 changes: 1 addition & 138 deletions test/e2e/v1beta1/scripts/gh-actions/run-e2e-experiment.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
import argparse
import logging
import time

from kubeflow.katib import ApiClient
from kubeflow.katib import KatibClient
Expand All @@ -9,6 +8,7 @@
from kubeflow.katib.constants import constants
from kubeflow.katib.utils.utils import FakeResponse
from kubernetes import client
from verify import verify_experiment_results
import yaml

# Experiment timeout is 40 min.
Expand All @@ -18,143 +18,6 @@
logging.basicConfig(level=logging.INFO)


def verify_experiment_results(
katib_client: KatibClient,
experiment: models.V1beta1Experiment,
exp_name: str,
exp_namespace: str,
):

# Get the best objective metric.
best_objective_metric = None
for metric in experiment.status.current_optimal_trial.observation.metrics:
if metric.name == experiment.spec.objective.objective_metric_name:
best_objective_metric = metric
break

if best_objective_metric is None:
raise Exception(
"Unable to get the best metrics for objective: {}. Current Optimal Trial: {}".format(
experiment.spec.objective.objective_metric_name,
experiment.status.current_optimal_trial,
)
)

# Get Experiment Succeeded reason.
for c in experiment.status.conditions:
if (
c.type == constants.EXPERIMENT_CONDITION_SUCCEEDED
and c.status == constants.CONDITION_STATUS_TRUE
):
succeeded_reason = c.reason
break

trials_completed = experiment.status.trials_succeeded or 0
trials_completed += experiment.status.trials_early_stopped or 0
max_trial_count = experiment.spec.max_trial_count

# If Experiment is Succeeded because of Max Trial Reached, all Trials must be completed.
if (
succeeded_reason == "ExperimentMaxTrialsReached"
and trials_completed != max_trial_count
):
raise Exception(
"All Trials must be Completed. Max Trial count: {}, Experiment status: {}".format(
max_trial_count, experiment.status
)
)

# If Experiment is Succeeded because of Goal reached, the metrics must be correct.
if succeeded_reason == "ExperimentGoalReached" and (
(
experiment.spec.objective.type == "minimize"
and float(best_objective_metric.min) > float(experiment.spec.objective.goal)
)
or (
experiment.spec.objective.type == "maximize"
and float(best_objective_metric.max) < float(experiment.spec.objective.goal)
)
):
raise Exception(
"Experiment goal is reached, but metrics are incorrect. "
f"Experiment objective: {experiment.spec.objective}. "
f"Experiment best objective metric: {best_objective_metric}"
)

# Verify Suggestion's resources. Suggestion name = Experiment name.
suggestion = katib_client.get_suggestion(exp_name, exp_namespace)

# For the Never or FromVolume resume policies Suggestion must be Succeeded.
# For the LongRunning resume policy Suggestion must be always Running.
for c in suggestion.status.conditions:
if (
c.type == constants.EXPERIMENT_CONDITION_SUCCEEDED
and c.status == constants.CONDITION_STATUS_TRUE
and experiment.spec.resume_policy == "LongRunning"
):
raise Exception(
f"Suggestion is Succeeded while Resume Policy is {experiment.spec.resume_policy}."
f"Suggestion conditions: {suggestion.status.conditions}"
)
elif (
c.type == constants.EXPERIMENT_CONDITION_RUNNING
and c.status == constants.CONDITION_STATUS_TRUE
and experiment.spec.resume_policy != "LongRunning"
):
raise Exception(
f"Suggestion is Running while Resume Policy is {experiment.spec.resume_policy}."
f"Suggestion conditions: {suggestion.status.conditions}"
)

# For Never and FromVolume resume policies verify Suggestion's resources.
if (
experiment.spec.resume_policy == "Never"
or experiment.spec.resume_policy == "FromVolume"
):
resource_name = exp_name + "-" + experiment.spec.algorithm.algorithm_name

# Suggestion's Service and Deployment should be deleted.
for i in range(10):
try:
client.AppsV1Api().read_namespaced_deployment(
resource_name, exp_namespace
)
except client.ApiException as e:
if e.status == 404:
break
else:
raise e
# Deployment deletion might take some time.
time.sleep(1)
if i == 10:
raise Exception(
"Suggestion Deployment is still alive for Resume Policy: {}".format(
experiment.spec.resume_policy
)
)

try:
client.CoreV1Api().read_namespaced_service(resource_name, exp_namespace)
except client.ApiException as e:
if e.status != 404:
raise e
else:
raise Exception(
"Suggestion Service is still alive for Resume Policy: {}".format(
experiment.spec.resume_policy
)
)

# For FromVolume resume policy PVC should not be deleted.
if experiment.spec.resume_policy == "FromVolume":
try:
client.CoreV1Api().read_namespaced_persistent_volume_claim(
resource_name, exp_namespace
)
except client.ApiException:
raise Exception("PVC is deleted for FromVolume Resume Policy")


def run_e2e_experiment(
katib_client: KatibClient,
experiment: models.V1beta1Experiment,
Expand Down
3 changes: 3 additions & 0 deletions test/e2e/v1beta1/scripts/gh-actions/run-e2e-experiment.sh
Original file line number Diff line number Diff line change
Expand Up @@ -48,4 +48,7 @@ for exp_name in "${EXPERIMENT_FILE_ARRAY[@]}"; do
--verbose || (kubectl get pods -n kubeflow && exit 1)
done

python run-e2e-tune-api.py --namespace default \
--verbose || (kubectl get pods -n kubeflow && exit 1)

exit 0
90 changes: 90 additions & 0 deletions test/e2e/v1beta1/scripts/gh-actions/run-e2e-tune-api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import argparse
import logging

from kubeflow.katib import KatibClient
from kubeflow.katib import search
from verify import verify_experiment_results
import yaml

# Experiment timeout is 40 min.
EXPERIMENT_TIMEOUT = 60 * 40

# The default logging config.
logging.basicConfig(level=logging.INFO)


def run_e2e_experiment_create_by_tune(
katib_client: KatibClient,
exp_name: str,
exp_namespace: str,
):
# Create Katib Experiment and wait until it is finished.
logging.debug("Creating Experiment: {}/{}".format(exp_namespace, exp_name))

# Use the test case from get-started tutorial.
# https://www.kubeflow.org/docs/components/katib/getting-started/#getting-started-with-katib-python-sdk
# [1] Create an objective function.
def objective(parameters):
result = 4 * int(parameters["a"]) - float(parameters["b"]) ** 2
print(f"result={result}")

# [2] Create hyperparameter search space.
parameters = {
"a": search.int(min=10, max=20),
"b": search.double(min=0.1, max=0.2)
}

# [3] Create Katib Experiment with 4 Trials and 2 CPUs per Trial.
# And Wait until Experiment reaches Succeeded condition.
katib_client.tune(
name=exp_name,
namespace=exp_namespace,
objective=objective,
parameters=parameters,
objective_metric_name="result",
max_trial_count=4,
resources_per_trial={"cpu": "2"},
)
experiment = katib_client.wait_for_experiment_condition(
exp_name, exp_namespace, timeout=EXPERIMENT_TIMEOUT
)

# Verify the Experiment results.
verify_experiment_results(katib_client, experiment, exp_name, exp_namespace)

# Print the Experiment and Suggestion.
logging.debug(katib_client.get_experiment(exp_name, exp_namespace))
logging.debug(katib_client.get_suggestion(exp_name, exp_namespace))


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--namespace", type=str, required=True, help="Namespace for the Katib E2E test",
)
parser.add_argument(
"--trial-pod-annotations", type=str, help="Annotation for the pod created by trial",
)
parser.add_argument(
"--verbose", action="store_true", help="Verbose output for the Katib E2E test",
)
args = parser.parse_args()

katib_client = KatibClient()

# Test with run_e2e_experiment_create_by_tune
exp_name = "tune-example"
exp_namespace = args.namespace
try:
run_e2e_experiment_create_by_tune(katib_client, exp_name, exp_namespace)
logging.info("---------------------------------------------------------------")
logging.info(f"E2E is succeeded for Experiment created by tune: {exp_namespace}/{exp_name}")
except Exception as e:
logging.info("---------------------------------------------------------------")
logging.info(f"E2E is failed for Experiment created by tune: {exp_namespace}/{exp_name}")
raise e
finally:
# Delete the Experiment.
logging.info("---------------------------------------------------------------")
logging.info("---------------------------------------------------------------")
katib_client.delete_experiment(exp_name, exp_namespace)
Loading

0 comments on commit b43f603

Please sign in to comment.