-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijstra_AStar.py
182 lines (137 loc) · 6.98 KB
/
Dijstra_AStar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 20 16:53:53 2018
@author: KUSHAL
"""
input_files = ['input_1.txt', 'input_2.txt' , 'input_3.txt']
coords_files = ['coords_1.txt','coords_2.txt','coords_3.txt']
def main(input_file, coord_file, heur_weight):
try:
import numpy as np
import math as mt
except:
print ('Install numpy and math')
# try:
# import networkx as nx
# import matplotlib.pyplot as plt
# except:
# pass
# =============================================================================
# Defining the function for sorting data from the input files and storing it in a nested list
# =============================================================================
def sort_data(input_file):
"""This function sorts the data from the input file into a list"""
with open(input_file,"r") as input_file: #open file
data = input_file.readlines() #read lines from the text file
row_data = [] #initiate a multidimensional list to store the data
for line in data: #split the words in each line and store them in row_data
row_data.append(line.split())
row_float = []
for thing in row_data:
row_float.append(list(map(float,thing)))
return row_float #return the list in float
# =============================================================================
# Assigning the variables with number of vertices and specifying
# the start and the end vertex
# Reading the coordinates and storing the list of coordinates for the given points
# =============================================================================
input_vertices = sort_data(input_file)
Coordinates = sort_data(coord_file)
vertice_count = int(input_vertices[0][0])
start_vertex = int(input_vertices[1][0])
end_vertex = int(input_vertices[2][0])
del input_vertices[0:3]
input_vertices = np.array(input_vertices) # input_vertices is a numpy array showing the graph
# =============================================================================
# Computing the cost array which stores the cost of going from one vertex to
# its adjacent vertices
# =============================================================================
cost_array = np.zeros((int(max(input_vertices[:,0])+1),int(max(input_vertices[:,1])+1)))
cost_array = np.full_like(cost_array, np.inf)
for i in range(len(input_vertices[:,0])):
cost_array[int(input_vertices[i,0]),int(input_vertices[i,1])] = input_vertices[i,2]
# =============================================================================
# Defining Heuristics Function
# =============================================================================
def heuristic(point,end_vertex):
euclidian_distance = mt.sqrt((Coordinates[point][0] - Coordinates[end_vertex][0])**2 + (Coordinates[point][1] - Coordinates[end_vertex][1])**2)
return euclidian_distance
# =============================================================================
# Implementing the Dijkstra/A* algorithm
# =============================================================================
Open_list = [start_vertex]
Closed_list = []
V = np.zeros((int(vertice_count+1)))
V = np.full_like(V, np.inf)
V[start_vertex] = 0
B = np.zeros((int(vertice_count+1)))
def find_neighbors(vertice):
"""This function finds the neighbours of the vertex specified as vertice"""
neighbors = []
delta = 0
for kau in range(1,int(max(input_vertices[:,1]))):
if cost_array[vertice,kau] != np.inf and cost_array[vertice,kau] != 0:
delta +=1
neighbors.append(kau)
return neighbors, delta
count = 0
while end_vertex not in Closed_list:
curr_cost = []
for kes in Open_list:
curr_cost.append(V[kes] + heur_weight * heuristic(kes,end_vertex))
min_cost_open_handle = np.argmin(curr_cost)
min_cost_open = Open_list[min_cost_open_handle]
del curr_cost[min_cost_open_handle]
[neighbors,delta] = find_neighbors(min_cost_open)
Open_list.remove(min_cost_open)
Closed_list.append(min_cost_open)
count += 1
for neigh in neighbors:
if neigh not in Closed_list and neigh not in Open_list:
Open_list.append(neigh)
if neigh not in Closed_list:
Vnew = cost_array[min_cost_open,neigh] + V[min_cost_open]
if Vnew < V[neigh]:
V[neigh] = Vnew
B[neigh] = min_cost_open
V_opt = V[end_vertex]
path = []
path.append(end_vertex)
i = int(end_vertex)
while start_vertex not in path:
path.append(int(B[i]))
i = int(B[i])
del i
Pos = {}
X = nx.DiGraph()
for i in range(1,int(vertice_count)+1):
Pos.update({i:(Coordinates[i-1][0],Coordinates[i-1][1])})
vertices_tuple = [tuple(row) for row in input_vertices]
X.add_nodes_from(Pos.keys())
#XY=nx.shortest_path(X,6,94)
attrs = {20: {'size' : 2}}
nx.set_node_attributes(X,attrs)
X.add_weighted_edges_from(vertices_tuple)
nx.draw_networkx(X, Pos,font_size = 3, node_size = 15, arrows = False)
nx.draw_networkx_nodes(X, Pos, nodelist = Closed_list, node_size = 20, node_color = 'y')
nx.draw_networkx_nodes(X, Pos, nodelist = Open_list , node_color = 'g', node_size = 20)
nx.draw_networkx_nodes(X, Pos, nodelist = [start_vertex], node_color = 'b', node_size=20)
nx.draw_networkx_nodes(X, Pos, nodelist = [end_vertex], node_color = 'b', node_size = 20)
nx.draw_networkx_nodes(X, Pos, nodelist = path , node_color = 'c', node_size = 30)
figure = plt.figure(figsize=(8,8))
plt.axis("off")
figure.savefig(input_file+'.png', dpi = 700)
plt.clf()
return V_opt , count, path
with open('output_costs.txt', 'w') as file_costs, open('output_numiters.txt', 'w') as file_numiters:
for i in range(len(input_files)):
for j in [0,1]:
[V_Op,iterations, path] = main(input_files[i],coords_files[i],j)
file_costs.write('%0.6f ' %V_Op)
file_numiters.write('%d ' %iterations)
file_costs.write('\n')
file_numiters.write('\n')
# print('file:'+ input_files[i])
# print('Optimum cost: ' + str(V_Op))
# print('Number of iterations: ' + str(iterations))
# print('===========================')