Implementation of MoE Mamba from the paper: "MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts" in Pytorch and Zeta. The SwitchMoE
architecture is from the Switch Transformer paper. And, I still need help with it. If you want to help please join the Agora discord and server and help in the MoE Mamba channel.
pip install moe-mamba
import torch
from moe_mamba import MoEMambaBlock
x = torch.randn(1, 10, 512)
model = MoEMambaBlock(
dim=512,
depth=6,
d_state=128,
expand=4,
num_experts=4,
)
out = model(x)
print(out)
import torch
from moe_mamba.model import MoEMamba
# Create a tensor of shape (1, 1024, 512)
x = torch.randint(0, 10000, (1, 512))
# Create a MoEMamba model
model = MoEMamba(
num_tokens=10000,
dim=512,
depth=1,
d_state=512,
causal=True,
shared_qk=True,
exact_window_size=True,
dim_head=64,
m_expand=4,
num_experts=4,
)
# Forward pass
out = model(x)
# Print the shape of the output tensor
print(out)
make style
to format the codemake check_code_quality
to check code quality (PEP8 basically)black .
ruff . --fix
@misc{pióro2024moemamba,
title={MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts},
author={Maciej Pióro and Kamil Ciebiera and Krystian Król and Jan Ludziejewski and Sebastian Jaszczur},
year={2024},
eprint={2401.04081},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MIT