Summary:
Diagnosis | Subset | n | Count per severity class |
---|---|---|---|
noncovid | train | N/A | |
val | N/A | ||
test | N/A | ||
covid | train | 460 | 132, 123, 166, 39 |
val | 101 | 31, 20, 45, 5 | |
test | 231 | N/A |
- Installation
pip install -r requirements.txt
2a. Run interactively in ipython or python
$ ipython
In [1]: BS=128; IMGSET='all2'; MID='wideres101'; exec( open('icassp_sep.py').read() )
2b. Run non-interactively
$ python icassp_sep.py 1 0 16
# MID=1
#
# FT=0 # FT=0 : Fine tune the last layer only
# # FT=1 : Fine tune all layers
#
# BS=16
Thank you for your exploration of this repo and consideration to cite this work:
Tang LY. Severity classification of ground-glass opacity via 2-D convolutional neural network and lung CT scans: a 3-day exploration. arXiv preprint arXiv:2303.16904. 2023 Mar 23.
@article{tang2023severity,
title={Severity classification of ground-glass opacity via 2-D convolutional neural network and lung CT scans: a 3-day exploration},
author={Tang, Lisa YW},
journal={arXiv preprint arXiv:2303.16904},
year={2023}
}
- https://www.eibir.org/covid-19-imaging-datasets/
- https://www.kaggle.com/code/utkarshsaxenadn/ct-scans-3d-data-3d-data-processing-3d-cnn#3D-Scans-Data-Loading
https://github.com/pzaffino/COVID19-intensity-labeling/blob/main/lungs_processing.py
- uses Simple ITK