-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset_model_with_query_vector.py
467 lines (364 loc) · 20 KB
/
dataset_model_with_query_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
import os.path
import sys
import torch
import torch.utils.data as data
import numpy as np
import scipy.spatial as spatial
import sys
# do NOT modify the returned points! kdtree uses a reference, not a copy of these points,
# so modifying the points would make the kdtree give incorrect results
def load_shape(point_filename, normals_filename, curv_filename, pidx_filename):
pts = np.load(point_filename+'.npy')
if normals_filename != None:
normals = np.load(normals_filename+'.npy')
else:
normals = None
if curv_filename != None:
curvatures = np.load(curv_filename+'.npy')
else:
curvatures = None
if pidx_filename != None:
patch_indices = np.load(pidx_filename+'.npy')
else:
patch_indices = None
sys.setrecursionlimit(int(max(1000, round(pts.shape[0]/10)))) # otherwise KDTree construction may run out of recursions
kdtree = spatial.cKDTree(pts, 10)
return Shape(pts=pts, kdtree=kdtree, normals=normals, curv=curvatures, pidx=patch_indices)
class SequentialPointcloudPatchSampler(data.sampler.Sampler):
def __init__(self, data_source):
self.data_source = data_source
self.total_patch_count = None
self.total_patch_count = 0
for shape_ind, _ in enumerate(self.data_source.shape_names):
self.total_patch_count = self.total_patch_count + self.data_source.shape_patch_count[shape_ind]
def __iter__(self):
return iter(range(self.total_patch_count))
def __len__(self):
return self.total_patch_count
class SequentialShapeRandomPointcloudPatchSampler(data.sampler.Sampler):
def __init__(self, data_source, patches_per_shape, seed=None, sequential_shapes=False, identical_epochs=False):
self.data_source = data_source
self.patches_per_shape = patches_per_shape
self.sequential_shapes = sequential_shapes
self.seed = seed
self.identical_epochs = identical_epochs
self.total_patch_count = None
self.shape_patch_inds = None
if self.seed is None:
self.seed = np.random.random_integers(0, 2**32-1, 1)[0]
self.rng = np.random.RandomState(self.seed)
self.total_patch_count = 0
for shape_ind, _ in enumerate(self.data_source.shape_names):
self.total_patch_count = self.total_patch_count + min(self.patches_per_shape, self.data_source.shape_patch_count[shape_ind])
def __iter__(self):
# optionally always pick the same permutation (mainly for debugging)
if self.identical_epochs:
self.rng.seed(self.seed)
# global point index offset for each shape
shape_patch_offset = list(np.cumsum(self.data_source.shape_patch_count))
shape_patch_offset.insert(0, 0)
shape_patch_offset.pop()
shape_inds = range(len(self.data_source.shape_names))
if not self.sequential_shapes:
shape_inds = self.rng.permutation(shape_inds)
# return a permutation of the points in the dataset where all points in the same shape are adjacent (for performance reasons):
# first permute shapes, then concatenate a list of permuted points in each shape
self.shape_patch_inds = [[]]*len(self.data_source.shape_names)
point_permutation = []
for shape_ind in shape_inds:
start = shape_patch_offset[shape_ind]
end = shape_patch_offset[shape_ind]+self.data_source.shape_patch_count[shape_ind]
global_patch_inds = self.rng.choice(range(start, end), size=min(self.patches_per_shape, end-start), replace=False)
point_permutation.extend(global_patch_inds)
# save indices of shape point subset
self.shape_patch_inds[shape_ind] = global_patch_inds - start
return iter(point_permutation)
def __len__(self):
return self.total_patch_count
class RandomPointcloudPatchSampler(data.sampler.Sampler):
def __init__(self, data_source, patches_per_shape, seed=None, identical_epochs=False):
self.data_source = data_source
self.patches_per_shape = patches_per_shape
self.seed = seed
self.identical_epochs = identical_epochs
self.total_patch_count = None
if self.seed is None:
self.seed = np.random.random_integers(0, 2**32-1, 1)[0]
self.rng = np.random.RandomState(self.seed)
self.total_patch_count = 0
for shape_ind, _ in enumerate(self.data_source.shape_names):
self.total_patch_count = self.total_patch_count + min(self.patches_per_shape, self.data_source.shape_patch_count[shape_ind])
def __iter__(self):
# optionally always pick the same permutation (mainly for debugging)
if self.identical_epochs:
self.rng.seed(self.seed)
return iter(self.rng.choice(sum(self.data_source.shape_patch_count), size=self.total_patch_count, replace=False))
def __len__(self):
return self.total_patch_count
class Shape():
def __init__(self, pts, kdtree, normals=None, curv=None, pidx=None):
self.pts = pts
self.kdtree = kdtree
self.normals = normals
self.curv = curv
self.pidx = pidx # patch center points indices (None means all points are potential patch centers)
class Cache():
def __init__(self, capacity, loader, loadfunc):
self.elements = {}
self.used_at = {}
self.capacity = capacity
self.loader = loader
self.loadfunc = loadfunc
self.counter = 0
def get(self, element_id):
if element_id not in self.elements:
# cache miss
# if at capacity, throw out least recently used item
if len(self.elements) >= self.capacity:
remove_id = min(self.used_at, key=self.used_at.get)
del self.elements[remove_id]
del self.used_at[remove_id]
# load element
self.elements[element_id] = self.loadfunc(self.loader, element_id)
self.used_at[element_id] = self.counter
self.counter += 1
return self.elements[element_id]
class PointcloudPatchDataset(data.Dataset):
# patch radius as fraction of the bounding box diagonal of a shape
def __init__(self, root, shape_list_filename, patch_radius, points_per_patch, patch_features,
seed=None, identical_epochs=False, use_pca=False, center='point', point_tuple=1, cache_capacity=1,
point_count_std=0.0, sparse_patches=False, neighbor_search_method='r', query_vector_path='./query_vector_5k.xyz', batch_query_size=512):
# initialize parameters
self.root = root
self.shape_list_filename = shape_list_filename
self.patch_features = patch_features
self.patch_radius = patch_radius
self.points_per_patch = points_per_patch
self.identical_epochs = identical_epochs
self.use_pca = use_pca
self.sparse_patches = sparse_patches
self.center = center
self.point_tuple = point_tuple
self.point_count_std = point_count_std
self.seed = seed
self.neighbor_search_method = neighbor_search_method
self.include_normals = False
self.include_curvatures = False
self.include_neighbor_normals = False
self.batch_query_size = batch_query_size
for pfeat in self.patch_features:
if pfeat == 'normal':
self.include_normals = True
elif pfeat == 'max_curvature' or pfeat == 'min_curvature':
self.include_curvatures = True
elif pfeat == 'neighbor_normals':
self.include_neighbor_normals = True
else:
raise ValueError('Unknown patch feature: %s' % (pfeat))
# self.loaded_shape = None
self.load_iteration = 0
self.shape_cache = Cache(cache_capacity, self, PointcloudPatchDataset.load_shape_by_index)
# get all shape names in the dataset
self.shape_names = []
with open(os.path.join(root, self.shape_list_filename)) as f:
self.shape_names = f.readlines()
self.shape_names = [x.strip() for x in self.shape_names]
self.shape_names = list(filter(None, self.shape_names))
# initialize rng for picking points in a patch
if self.seed is None:
self.seed = np.random.random_integers(0, 2**32-1, 1)[0]
self.rng = np.random.RandomState(self.seed)
# get basic information for each shape in the dataset
self.shape_patch_count = []
self.patch_radius_absolute = []
for shape_ind, shape_name in enumerate(self.shape_names):
print('getting information for shape %s' % (shape_name))
# load from text file and save in more efficient numpy format
point_filename = os.path.join(self.root, shape_name+'.xyz')
pts = np.loadtxt(point_filename).astype('float32')
np.save(point_filename+'.npy', pts)
if self.include_normals:
normals_filename = os.path.join(self.root, shape_name+'.normals')
normals = np.loadtxt(normals_filename).astype('float32')
np.save(normals_filename+'.npy', normals)
else:
normals_filename = None
if self.include_curvatures:
curv_filename = os.path.join(self.root, shape_name+'.curv')
curvatures = np.loadtxt(curv_filename).astype('float32')
np.save(curv_filename+'.npy', curvatures)
else:
curv_filename = None
if self.sparse_patches:
pidx_filename = os.path.join(self.root, shape_name+'.pidx')
patch_indices = np.loadtxt(pidx_filename).astype('int')
np.save(pidx_filename+'.npy', patch_indices)
else:
pidx_filename = None
shape = self.shape_cache.get(shape_ind)
if shape.pidx is None:
self.shape_patch_count.append(shape.pts.shape[0])
else:
self.shape_patch_count.append(len(shape.pidx))
bbdiag = float(np.linalg.norm(shape.pts.max(0) - shape.pts.min(0), 2))
self.patch_radius_absolute.append([bbdiag * rad for rad in self.patch_radius])
# load qeury vectors
if os.path.exists(query_vector_path):
self.query_vectors = np.loadtxt(query_vector_path).astype('float32')
self.query_vector_num = self.query_vectors.shape[0]
else:
raise ValueError('No such query vector file: %s' % (query_vector_path))
# returns a patch centered at the point with the given global index
# and the ground truth normal the the patch center
def __getitem__(self, index):
# find shape that contains the point with given global index
shape_ind, patch_ind = self.shape_index(index)
shape = self.shape_cache.get(shape_ind)
if shape.pidx is None:
center_point_ind = patch_ind
else:
center_point_ind = shape.pidx[patch_ind]
# get neighboring points (within euclidean distance patch_radius)
patch_pts = torch.zeros(self.points_per_patch*len(self.patch_radius_absolute[shape_ind]), 3, dtype=torch.float)
neighbor_normals = torch.zeros(self.points_per_patch * len(self.patch_radius_absolute[shape_ind]), 3,
dtype=torch.float)
# patch_pts_valid = torch.ByteTensor(self.points_per_patch*len(self.patch_radius_absolute[shape_ind])).zero_()
patch_pts_valid = []
scale_ind_range = np.zeros([len(self.patch_radius_absolute[shape_ind]), 2], dtype='int')
effective_points_num = np.array([], dtype=np.int)
for s, rad in enumerate(self.patch_radius_absolute[shape_ind]):
if self.neighbor_search_method == 'r':
patch_point_inds = np.array(shape.kdtree.query_ball_point(shape.pts[center_point_ind, :], rad))
patch_scale = rad
elif self.neighbor_search_method == 'k':
point_distances, patch_point_inds = shape.kdtree.query(shape.pts[center_point_ind, :], k=self.points_per_patch)
rad = max(point_distances)
patch_scale = rad
# optionally always pick the same points for a given patch index (mainly for debugging)
if self.identical_epochs:
self.rng.seed((self.seed + index) % (2**32))
point_count = int(min(self.points_per_patch, len(patch_point_inds)))
effective_points_num = np.append(effective_points_num, point_count)
# randomly decrease the number of points to get patches with different point densities
if self.point_count_std > 0:
point_count = max(5, round(point_count * self.rng.uniform(1.0-self.point_count_std*2)))
point_count = min(point_count, len(patch_point_inds))
# if there are too many neighbors, pick a random subset
if point_count < len(patch_point_inds):
patch_point_inds = patch_point_inds[self.rng.choice(len(patch_point_inds), point_count, replace=False)]
start = s*self.points_per_patch
end = start+point_count
scale_ind_range[s, :] = [start, end]
patch_pts_valid += list(range(start, end))
# convert points to torch tensors
patch_pts[start:end, :] = torch.from_numpy(shape.pts[patch_point_inds, :])
###plane_score[start:end] = torch.norm(patch_pts[start:end, :]*torch.from_numpy(shape.normals[center_point_ind:center_point_ind+1,:]),dim=-1,p=2)
# center patch (central point at origin - but avoid changing padded zeros)
if self.center == 'mean':
patch_pts[start:end, :] = patch_pts[start:end, :] - patch_pts[start:end, :].mean(0)
elif self.center == 'point':
patch_pts[start:end, :] = patch_pts[start:end, :] - torch.from_numpy(shape.pts[center_point_ind, :])
elif self.center == 'none':
pass # no centering
else:
raise ValueError('Unknown patch centering option: %s' % (self.center))
# normalize size of patch (scale with 1 / patch radius)
# if self.neighbor_search_method == 'r':
patch_pts[start:end, :] = patch_pts[start:end, :] / rad
# elif self.neighbor_search_method == 'k':
# patch_pts[start:end, :] = patch_pts[start:end, :] / torch.max(torch.norm(patch_pts[start:end, :], p=2, dim=1))
# start_time = time.time()
#print("centering time: %fs" %(1000*(start_time-end_time)))
if self.include_normals:
patch_normal = torch.from_numpy(shape.normals[center_point_ind, :])
if self.include_neighbor_normals:
neighbor_normals[start:end, :] = torch.from_numpy(shape.normals[patch_point_inds, :])
if self.include_curvatures:
patch_curv = torch.from_numpy(shape.curv[center_point_ind, :])
# scale curvature to match the scaled vertices (curvature*s matches position/s):
# if self.neighbor_search_method == 'r':
patch_curv = patch_curv * self.patch_radius_absolute[shape_ind][0]
# elif self.neighbor_search_method == 'k':
# patch_curv = patch_curv / torch.max(torch.norm(patch_pts[start:end, :], p=2, dim=1))
# loading query_vectors
sample_ind = self.rng.choice(self.query_vector_num, size=self.batch_query_size, replace=False)
query_vectors = torch.tensor(self.query_vectors[sample_ind, :])
angle_offsets = compute_angle_offset(query_vectors, patch_normal)
# start_time = time.time()
if self.use_pca:
# compute pca of points in the patch:
# center the patch around the mean:
pts_mean = patch_pts[patch_pts_valid, :].mean(0)
patch_pts[patch_pts_valid, :] = patch_pts[patch_pts_valid, :] - pts_mean
trans, _, _ = torch.svd(torch.t(patch_pts[patch_pts_valid, :]))
patch_pts[patch_pts_valid, :] = torch.mm(patch_pts[patch_pts_valid, :], trans)
cp_new = -pts_mean # since the patch was originally centered, the original cp was at (0,0,0)
cp_new = torch.matmul(cp_new, trans)
# re-center on original center point
patch_pts[patch_pts_valid, :] = patch_pts[patch_pts_valid, :] - cp_new
if self.include_normals:
patch_normal = torch.matmul(patch_normal, trans)
if self.include_neighbor_normals:
neighbor_normals = torch.matmul(neighbor_normals, trans)
query_vectors = torch.matmul(query_vectors, trans)
else:
trans = torch.eye(3).float()
# get point tuples from the current patch
if self.point_tuple > 1:
patch_tuples = torch.zeros(self.points_per_patch*len(self.patch_radius_absolute[shape_ind]), 3*self.point_tuple, dtype=torch.float)
for s, rad in enumerate(self.patch_radius_absolute[shape_ind]):
start = scale_ind_range[s, 0]
end = scale_ind_range[s, 1]
point_count = end - start
tuple_count = point_count**self.point_tuple
# get linear indices of the tuples
if tuple_count > self.points_per_patch:
patch_tuple_inds = self.rng.choice(tuple_count, self.points_per_patch, replace=False)
tuple_count = self.points_per_patch
else:
patch_tuple_inds = np.arange(tuple_count)
# linear tuple index to index for each tuple element
patch_tuple_inds = np.unravel_index(patch_tuple_inds, (point_count,)*self.point_tuple)
for t in range(self.point_tuple):
patch_tuples[start:start+tuple_count, t*3:(t+1)*3] = patch_pts[start+patch_tuple_inds[t], :]
patch_pts = patch_tuples
patch_feats = ()
for pfeat in self.patch_features:
if pfeat == 'normal':
patch_feats = patch_feats + (patch_normal,)
elif pfeat == 'max_curvature':
patch_feats = patch_feats + (patch_curv[0:1],)
elif pfeat == 'min_curvature':
patch_feats = patch_feats + (patch_curv[1:2],)
elif pfeat == 'neighbor_normals':
patch_feats = patch_feats + (neighbor_normals,)
else:
raise ValueError('Unknown patch feature: %s' % (pfeat))
return (patch_pts,) + patch_feats + (trans,) + (patch_scale,) + (shape.pts[center_point_ind, :], ), (query_vectors, angle_offsets)
def __len__(self):
return sum(self.shape_patch_count)
# translate global (dataset-wide) point index to shape index & local (shape-wide) point index
def shape_index(self, index):
shape_patch_offset = 0
shape_ind = None
for shape_ind, shape_patch_count in enumerate(self.shape_patch_count):
if index >= shape_patch_offset and index < shape_patch_offset + shape_patch_count:
shape_patch_ind = index - shape_patch_offset
break
shape_patch_offset = shape_patch_offset + shape_patch_count
return shape_ind, shape_patch_ind
# load shape from a given shape index
def load_shape_by_index(self, shape_ind):
point_filename = os.path.join(self.root, self.shape_names[shape_ind]+'.xyz')
normals_filename = os.path.join(self.root, self.shape_names[shape_ind]+'.normals') if self.include_normals else None
curv_filename = os.path.join(self.root, self.shape_names[shape_ind]+'.curv') if self.include_curvatures else None
pidx_filename = os.path.join(self.root, self.shape_names[shape_ind]+'.pidx') if self.sparse_patches else None
return load_shape(point_filename, normals_filename, curv_filename, pidx_filename)
def compute_angle_offset(query_vector, gt_normal): # query_vector: batchsize * 3, gt normal batchsize * 3
norm = np.linalg.norm(np.cross(query_vector, gt_normal), axis=1)
eps=1e-6
norm[(norm < eps) & (norm > -eps)] = 0.0
norm[norm > 1.0] = 1.0
norm[norm < -1.0] = -1.0
return np.arcsin(norm)