Shujuan Li* · Junsheng Zhou* · Baorui Ma · Yu-Shen Liu · Zhizhong Han
(* Equal Contribution)
- Install python dependencies:
conda create -n NeAF python=3.7.11
conda activate NeAF
pip install torch==1.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install tensorboardX scipy scikit-learn
Please download PCPNet dataset at: http://geometry.cs.ucl.ac.uk/projects/2018/pcpnet/
The preprocessed data of SceneNN can be downloaded at: https://drive.google.com/drive/folders/1JkL3PrYSZGylzIhXdL1hMKlxg6Idv88x?usp=drive_link
To evaluate NeAF, you can simply use the following command:
python run.py --mode test --indir your_dataset_path --name NeAF --test_epoch 900 --need_prediction 1 --checkpoints 5 --coarse_normal_num 10 --gpu 0 1
# Please change 'your_dataset_path' to your own path of the dataset
To train NeAF, you can simply use the following command:
python run.py --mode train --indir PCPNet_dataset_path --name NeAF --nepoch 1000 --lr 0.001 --query_vector_path ./query_vector_5k.xyz --gpu 0 1
# Please change 'PCPNet_dataset_path' to your own path of the PCPNet dataset
If you find our code or paper useful, please consider citing
@inproceedings{li2023neaf,
title={Neaf: Learning neural angle fields for point normal estimation},
author={Li, Shujuan and Zhou, Junsheng and Ma, Baorui and Liu, Yu-Shen and Han, Zhizhong},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
volume={37},
number={1},
pages={1396--1404},
year={2023}
}