Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[IA] Generalize the support for power-of-two (de)interleave intrinsics #123863

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 9 additions & 13 deletions llvm/include/llvm/CodeGen/TargetLowering.h
Original file line number Diff line number Diff line change
Expand Up @@ -3156,27 +3156,23 @@ class TargetLoweringBase {
/// Return true on success. Currently only supports
/// llvm.vector.deinterleave2
///
/// \p DI is the deinterleave intrinsic.
/// \p LI is the accompanying load instruction
/// \p DeadInsts is a reference to a vector that keeps track of dead
/// instruction during transformations.
virtual bool lowerDeinterleaveIntrinsicToLoad(
IntrinsicInst *DI, LoadInst *LI,
SmallVectorImpl<Instruction *> &DeadInsts) const {
/// \p LI is the accompanying load instruction.
/// \p DeinterleaveValues contains the deinterleaved values.
virtual bool
lowerDeinterleaveIntrinsicToLoad(LoadInst *LI,
ArrayRef<Value *> DeinterleaveValues) const {
return false;
}

/// Lower an interleave intrinsic to a target specific store intrinsic.
/// Return true on success. Currently only supports
/// llvm.vector.interleave2
///
/// \p II is the interleave intrinsic.
/// \p SI is the accompanying store instruction
/// \p DeadInsts is a reference to a vector that keeps track of dead
/// instruction during transformations.
virtual bool lowerInterleaveIntrinsicToStore(
IntrinsicInst *II, StoreInst *SI,
SmallVectorImpl<Instruction *> &DeadInsts) const {
/// \p InterleaveValues contains the interleaved values.
virtual bool
lowerInterleaveIntrinsicToStore(StoreInst *SI,
ArrayRef<Value *> InterleaveValues) const {
return false;
}

Expand Down
177 changes: 169 additions & 8 deletions llvm/lib/CodeGen/InterleavedAccessPass.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
Expand Down Expand Up @@ -478,23 +479,179 @@ bool InterleavedAccessImpl::lowerInterleavedStore(
return true;
}

// For an (de)interleave tree like this:
//
// A C B D
// |___| |___|
// |_____|
// |
// A B C D
//
// We will get ABCD at the end while the leaf operands/results
// are ACBD, which are also what we initially collected in
// getVectorInterleaveFactor / getVectorDeinterleaveFactor. But TLI
// hooks (e.g. lowerDeinterleaveIntrinsicToLoad) expect ABCD, so we need
// to reorder them by interleaving these values.
static void interleaveLeafValues(MutableArrayRef<Value *> SubLeaves) {
unsigned NumLeaves = SubLeaves.size();
if (NumLeaves == 2)
return;

assert(isPowerOf2_32(NumLeaves) && NumLeaves > 1);

const unsigned HalfLeaves = NumLeaves / 2;
// Visit the sub-trees.
interleaveLeafValues(SubLeaves.take_front(HalfLeaves));
interleaveLeafValues(SubLeaves.drop_front(HalfLeaves));

SmallVector<Value *, 8> Buffer;
// a0 a1 a2 a3 b0 b1 b2 b3
// -> a0 b0 a1 b1 a2 b2 a3 b3
for (unsigned i = 0U; i < NumLeaves; ++i)
Buffer.push_back(SubLeaves[i / 2 + (i % 2 ? HalfLeaves : 0)]);

llvm::copy(Buffer, SubLeaves.begin());
}

static bool
getVectorInterleaveFactor(IntrinsicInst *II, SmallVectorImpl<Value *> &Operands,
SmallVectorImpl<Instruction *> &DeadInsts) {
assert(II->getIntrinsicID() == Intrinsic::vector_interleave2);

// Visit with BFS
SmallVector<IntrinsicInst *, 8> Queue;
Queue.push_back(II);
while (!Queue.empty()) {
IntrinsicInst *Current = Queue.front();
Queue.erase(Queue.begin());

// All the intermediate intrinsics will be deleted.
DeadInsts.push_back(Current);

for (unsigned I = 0; I < 2; ++I) {
Value *Op = Current->getOperand(I);
if (auto *OpII = dyn_cast<IntrinsicInst>(Op))
if (OpII->getIntrinsicID() == Intrinsic::vector_interleave2) {
Queue.push_back(OpII);
continue;
}

// If this is not a perfectly balanced tree, the leaf
// result types would be different.
if (!Operands.empty() && Op->getType() != Operands.back()->getType())
return false;

Operands.push_back(Op);
}
}

const unsigned Factor = Operands.size();
// Currently we only recognize power-of-two factors.
// FIXME: should we assert here instead?
if (Factor <= 1 || !isPowerOf2_32(Factor))
return false;

interleaveLeafValues(Operands);
return true;
}

static bool
getVectorDeinterleaveFactor(IntrinsicInst *II,
SmallVectorImpl<Value *> &Results,
SmallVectorImpl<Instruction *> &DeadInsts) {
assert(II->getIntrinsicID() == Intrinsic::vector_deinterleave2);
using namespace PatternMatch;
if (!II->hasNUses(2))
return false;

// Visit with BFS
SmallVector<IntrinsicInst *, 8> Queue;
Queue.push_back(II);
while (!Queue.empty()) {
IntrinsicInst *Current = Queue.front();
Queue.erase(Queue.begin());
assert(Current->hasNUses(2));

// All the intermediate intrinsics will be deleted from the bottom-up.
DeadInsts.insert(DeadInsts.begin(), Current);

ExtractValueInst *LHS = nullptr, *RHS = nullptr;
for (User *Usr : Current->users()) {
if (!isa<ExtractValueInst>(Usr))
return 0;

auto *EV = cast<ExtractValueInst>(Usr);
// Intermediate ExtractValue instructions will also be deleted.
DeadInsts.insert(DeadInsts.begin(), EV);
ArrayRef<unsigned> Indices = EV->getIndices();
if (Indices.size() != 1)
return false;

if (Indices[0] == 0 && !LHS)
LHS = EV;
else if (Indices[0] == 1 && !RHS)
RHS = EV;
else
return false;
}

// We have legal indices. At this point we're either going
// to continue the traversal or push the leaf values into Results.
for (ExtractValueInst *EV : {LHS, RHS}) {
// Continue the traversal. We're playing safe here and matching only the
// expression consisting of a perfectly balanced binary tree in which all
// intermediate values are only used once.
if (EV->hasOneUse() &&
match(EV->user_back(),
m_Intrinsic<Intrinsic::vector_deinterleave2>()) &&
EV->user_back()->hasNUses(2)) {
auto *EVUsr = cast<IntrinsicInst>(EV->user_back());
Queue.push_back(EVUsr);
continue;
}

// If this is not a perfectly balanced tree, the leaf
// result types would be different.
if (!Results.empty() && EV->getType() != Results.back()->getType())
return false;

// Save the leaf value.
Results.push_back(EV);
}
}

const unsigned Factor = Results.size();
// Currently we only recognize power-of-two factors.
// FIXME: should we assert here instead?
if (Factor <= 1 || !isPowerOf2_32(Factor))
return 0;

interleaveLeafValues(Results);
return true;
}

bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
IntrinsicInst *DI, SmallSetVector<Instruction *, 32> &DeadInsts) {
LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0));

if (!LI || !LI->hasOneUse() || !LI->isSimple())
return false;

LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI << "\n");
SmallVector<Value *, 8> DeinterleaveValues;
SmallVector<Instruction *, 8> DeinterleaveDeadInsts;
if (!getVectorDeinterleaveFactor(DI, DeinterleaveValues,
DeinterleaveDeadInsts))
return false;

LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI
<< " with factor = " << DeinterleaveValues.size() << "\n");

// Try and match this with target specific intrinsics.
SmallVector<Instruction *, 4> DeinterleaveDeadInsts;
if (!TLI->lowerDeinterleaveIntrinsicToLoad(DI, LI, DeinterleaveDeadInsts))
if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues))
return false;

DeadInsts.insert(DeinterleaveDeadInsts.begin(), DeinterleaveDeadInsts.end());
// We now have a target-specific load, so delete the old one.
DeadInsts.insert(DI);
DeadInsts.insert(LI);
return true;
}
Expand All @@ -509,16 +666,20 @@ bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
if (!SI || !SI->isSimple())
return false;

LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II << "\n");
SmallVector<Value *, 8> InterleaveValues;
SmallVector<Instruction *, 8> InterleaveDeadInsts;
if (!getVectorInterleaveFactor(II, InterleaveValues, InterleaveDeadInsts))
return false;

LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II
<< " with factor = " << InterleaveValues.size() << "\n");

SmallVector<Instruction *, 4> InterleaveDeadInsts;
// Try and match this with target specific intrinsics.
if (!TLI->lowerInterleaveIntrinsicToStore(II, SI, InterleaveDeadInsts))
if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues))
return false;

// We now have a target-specific store, so delete the old one.
DeadInsts.insert(SI);
DeadInsts.insert(II);
DeadInsts.insert(InterleaveDeadInsts.begin(), InterleaveDeadInsts.end());
return true;
}
Expand Down
Loading
Loading