Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add missing linalg.batch_vecmat named op #70218

Merged
merged 2 commits into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -1796,6 +1796,74 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: B
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: batch_vecmat
cpp_class_name: BatchVecmatOp
doc: |-
Performs a batched matrix-vector multiplication.

Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: A
kind: input_tensor
type_var: T1
shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- !LinalgOperandDefConfig
name: B
kind: input_tensor
type_var: T2
shape_map: affine_map<()[s0, s1, s2] -> (s0, s1, s2)>
- !LinalgOperandDefConfig
name: C
kind: output_tensor
type_var: U
shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2, d1)>
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
iterator_types:
- parallel
- parallel
- reduction
assignments:
- !ScalarAssign
arg: C
value: !ScalarExpression
scalar_fn:
kind: binary
fn_name: add
operands:
- !ScalarExpression
scalar_arg: C
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: mul
operands:
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_signed
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: dot
cpp_class_name: DotOp
Expand Down
18 changes: 18 additions & 0 deletions mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -517,6 +517,24 @@ def batch_matvec(
)


@linalg_structured_op
def batch_vecmat(
A=TensorDef(T1, Batch, S.K),
B=TensorDef(T2, Batch, S.K, S.N),
C=TensorDef(U, Batch, S.N, output=True),
):
"""Performs a batched matrix-vector multiplication.

Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
domain(D.b, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.n] += TypeFn.cast_signed(U, A[D.b, D.k]) * TypeFn.cast_signed(
U, B[D.b, D.k, D.n]
)


@linalg_structured_op
def dot(A=TensorDef(T1, S.M), B=TensorDef(T2, S.M), C=TensorDef(U, output=True)):
"""Performs a dot product of two vectors to a scalar result.
Expand Down
25 changes: 25 additions & 0 deletions mlir/test/Dialect/Linalg/generalize-named-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -251,6 +251,31 @@ func.func @generalize_batch_matm_vec(%lhs : memref<?x?x?xi8>, %rhs: memref<?x?xi

// -----

func.func @generalize_batch_vecmat(%lhs : memref<?x?xi8>, %rhs: memref<?x?x?xi8>, %out: memref<?x?xf32>) {
linalg.batch_vecmat ins(%lhs, %rhs: memref<?x?xi8>, memref<?x?x?xi8>)
outs(%out: memref<?x?xf32>)
return
}
// CHECK: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
// CHECK: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d2, d1)>
// CHECK: #[[MAP2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>

// CHECK: @generalize_batch_vecmat

// CHECK: linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<?x?xi8>, memref<?x?x?xi8>)
// CHECK-SAME: outs(%{{.+}} : memref<?x?xf32>)
// CHECK: ^{{.+}}(%[[BBARG0:.+]]: i8, %[[BBARG1:.+]]: i8, %[[BBARG2:.+]]: f32)
// CHECK: %[[BBARG0_F32:.+]] = arith.sitofp %[[BBARG0]] : i8 to f32
// CHECK: %[[BBARG1_F32:.+]] = arith.sitofp %[[BBARG1]] : i8 to f32
// CHECK: %[[MUL:.+]] = arith.mulf %[[BBARG0_F32]], %[[BBARG1_F32]]
// CHECK: %[[ADD:.+]] = arith.addf %[[BBARG2]], %[[MUL]]
// CHECK: linalg.yield %[[ADD]] : f32

// -----

func.func @batch_reduce_gemm(%lhs: memref<7x8x9xf32>, %rhs: memref<7x9x8xf32>, %out: memref<8x8xf32>) {
linalg.batch_reduce_matmul ins(%lhs, %rhs: memref<7x8x9xf32>, memref<7x9x8xf32>)
outs(%out: memref<8x8xf32>)
Expand Down