Skip to content

Minimalist Keras implementation for performing object recognition with deep learning

License

Notifications You must be signed in to change notification settings

ltrottier/keras-object-recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

keras-object-recognition

Minimalist Keras implementation for deep learning object recognition.

Installation

(optional) Create a new anaconda environment:

conda create --name keras-object-recognition python=3
source activate keras-object-recognition

Install the requirements:

pip install -r requirements.txt

Make sure keras uses tensorflow backend. Edit ~/.keras/keras.json like this:

{
    "floatx": "float32",
    "epsilon": 1e-07,
    "backend": "tensorflow",
    "image_dim_ordering": "tf"
}

Training

Train a model with:

python train.py

Default options (see train.py for the available options):

  1. --savepath results
  2. --dataset cifar10
  3. --net_type resnet
  4. --depth 16
  5. --widen 1
  6. --weight_decay 5e-4
  7. --randomcrop 4
  8. --randomcrop_type reflect
  9. --hflip (pass to remove hflip)
  10. --epoch_max 200
  11. --epoch_init 0
  12. --bs 128
  13. --nthreads 2
  14. --lr 0.1
  15. --lr_decay 0.2
  16. --lr_schedule 60 120 160
  17. --momentum 0.9
  18. --nesterov (pass to remove nesterov)

Tensorboard Visualization

In a new terminal, call tensorboard and use the value of --savepath as logdir:

tensorboard --logdir=results

Open your internet browser at localhost with the provided port number (like 6006), as follows: http://localhost:6006/.

About

Minimalist Keras implementation for performing object recognition with deep learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages