Minimalist Keras implementation for deep learning object recognition.
(optional) Create a new anaconda environment:
conda create --name keras-object-recognition python=3
source activate keras-object-recognition
Install the requirements:
pip install -r requirements.txt
Make sure keras uses tensorflow backend. Edit ~/.keras/keras.json
like this:
{
"floatx": "float32",
"epsilon": 1e-07,
"backend": "tensorflow",
"image_dim_ordering": "tf"
}
Train a model with:
python train.py
Default options (see train.py
for the available options):
--savepath results
--dataset cifar10
--net_type resnet
--depth 16
--widen 1
--weight_decay 5e-4
--randomcrop 4
--randomcrop_type reflect
--hflip
(pass to remove hflip)--epoch_max 200
--epoch_init 0
--bs 128
--nthreads 2
--lr 0.1
--lr_decay 0.2
--lr_schedule 60 120 160
--momentum 0.9
--nesterov
(pass to remove nesterov)
In a new terminal, call tensorboard
and use the value of --savepath
as logdir:
tensorboard --logdir=results
Open your internet browser at localhost
with the provided port number (like 6006), as follows: http://localhost:6006/
.