-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #113 from luigibonati/checkpoint
Fix #103: CVs cannot be loaded from checkpoint
- Loading branch information
Showing
2 changed files
with
104 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
#!/usr/bin/env python | ||
|
||
|
||
# ============================================================================= | ||
# MODULE DOCSTRING | ||
# ============================================================================= | ||
|
||
""" | ||
Shared tests for the objects and functions in the mlcolvar.cvs package. | ||
""" | ||
|
||
|
||
# ============================================================================= | ||
# GLOBAL IMPORTS | ||
# ============================================================================= | ||
|
||
import os | ||
import tempfile | ||
|
||
import lightning | ||
import pytest | ||
import torch | ||
|
||
import mlcolvar.cvs | ||
from mlcolvar.data import DictDataset, DictModule | ||
|
||
|
||
# ============================================================================= | ||
# GLOBAL VARIABLES | ||
# ============================================================================= | ||
|
||
N_STATES = 2 | ||
N_DESCRIPTORS = 15 | ||
LAYERS = [N_DESCRIPTORS, 5, 5, N_STATES-1] | ||
|
||
# ============================================================================= | ||
# FIXTURES | ||
# ============================================================================= | ||
|
||
@pytest.fixture(scope="module") | ||
def dataset(): | ||
"""Dataset with all fields required by all CV types.""" | ||
n_samples = 10 | ||
|
||
# Weights should be optional so we don't add them. | ||
data = { | ||
"data": torch.randn((n_samples, N_DESCRIPTORS)), | ||
"data_lag": torch.randn((n_samples, N_DESCRIPTORS)), | ||
"target": torch.randn(n_samples), | ||
"weights": torch.rand(n_samples), | ||
"weights_lag": torch.rand(n_samples), | ||
} | ||
|
||
# With sequential sampling, this make sure that all labels are represented | ||
# in the validation and training set so that LDA/TDA don't complain. | ||
labels = torch.arange(N_STATES, dtype=torch.get_default_dtype()) | ||
data["labels"] = labels.repeat(n_samples // N_STATES + 1)[:n_samples] | ||
|
||
return DictDataset(data) | ||
|
||
|
||
# ============================================================================= | ||
# TESTS | ||
# ============================================================================= | ||
|
||
@pytest.mark.parametrize("cv_model", [ | ||
mlcolvar.cvs.DeepLDA(layers=LAYERS, n_states=N_STATES), | ||
mlcolvar.cvs.DeepTDA(n_states=N_STATES, n_cvs=1, target_centers=[-1., 1.], target_sigmas=[0.1, 0.1], layers=LAYERS), | ||
mlcolvar.cvs.RegressionCV(layers=LAYERS), | ||
mlcolvar.cvs.DeepTICA(layers=LAYERS, n_cvs=1), | ||
mlcolvar.cvs.AutoEncoderCV(encoder_layers=LAYERS), | ||
mlcolvar.cvs.VariationalAutoEncoderCV(n_cvs=1, encoder_layers=LAYERS[:-1]), | ||
]) | ||
def test_resume_from_checkpoint(cv_model, dataset): | ||
"""CVs correctly resume from a checkpoint.""" | ||
datamodule = DictModule(dataset, lengths=[1.0,0.], batch_size=len(dataset)) | ||
|
||
# Run a few steps of training in a temporary directory. | ||
with tempfile.TemporaryDirectory() as tmp_dir_path: | ||
# Simulate a couple of epochs of training. | ||
trainer = lightning.Trainer( | ||
max_epochs=2, | ||
enable_checkpointing=True, | ||
logger=False, | ||
enable_progress_bar=False, | ||
enable_model_summary=False, | ||
default_root_dir=tmp_dir_path, | ||
) | ||
trainer.fit(cv_model, datamodule) | ||
|
||
# Now load from checkpoint. | ||
file_name = 'epoch={}-step={}.ckpt'.format(trainer.current_epoch-1, trainer.global_step) | ||
checkpoint_file_path = os.path.join(tmp_dir_path, 'checkpoints', file_name) | ||
cv_model2 = cv_model.__class__.load_from_checkpoint(checkpoint_file_path) | ||
|
||
# Check that state is the same. | ||
x = dataset['data'] | ||
cv_model.eval() | ||
cv_model2.eval() | ||
assert torch.allclose(cv_model(x), cv_model2(x)) |