Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chore cleanup #206

Merged
merged 3 commits into from
Mar 5, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
# That pesky Mac file
.DS_Store

# Vim Swapfiles
.*.swp
.*.swo
Expand Down
17 changes: 10 additions & 7 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,23 +11,26 @@ jobs:
include:
- name: "Minimum install_requires versions"
install:
- pip install numpy~=1.12.0 pandas~=0.24.0 SQLAlchemy~=1.1.18 psycopg2~=2.7.0
- pip install pytest==4.4.2 hypothesis==4.50.2 attrs==19.3.0
- pip install -r requirements-test.txt
- pip install . numpy~=1.12.0 pandas~=0.24.0 SQLAlchemy~=1.1.18 psycopg2~=2.7.0
- name: "Late 2019 dependencies"
install:
- pip install numpy==1.17.4 pandas==0.24.2 SQLAlchemy==1.2.19 psycopg2==2.8.4
- pip install pytest==4.4.2 hypothesis==4.50.2 attrs==19.3.0
- pip install -r requirements-test.txt
- pip install . numpy==1.17.4 pandas==0.24.2 SQLAlchemy==1.2.19 psycopg2==2.8.4
- name: "Newest studied dependency versions"
install:
- pip install numpy==1.17.4 pandas~=0.25.3 SQLAlchemy~=1.3.11 psycopg2~=2.8.4
- pip install pytest==4.4.2 hypothesis==4.50.2 attrs==19.3.0
- pip install -r requirements-test.txt
- pip install . numpy==1.17.4 pandas~=0.25.3 SQLAlchemy~=1.3.11 psycopg2~=2.8.4
- name: "Pure setup.py install"
install:
- pip install -r requirements-test.txt
- pip install ./
- pip install psycopg2~=2.8.4
- pip install pytest==4.4.2 hypothesis==4.50.2 attrs==19.3.0

# command to run tests
install:
- pip install -r requirements.txt
- pip install .
services:
- postgresql
env:
Expand Down
7 changes: 5 additions & 2 deletions Makefile
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
NOTEBOOK_TESTS=$(addprefix examples/, examples-dplyr-funcs.ipynb case-iris-select.ipynb examples-postgres.ipynb examples-varspec.ipynb)
NOTEBOOK_TESTS=$(addprefix examples/, \
examples-dplyr-funcs.ipynb case-iris-select.ipynb examples-postgres.ipynb examples-varspec.ipynb \
examples-siu.ipynb \
)

AUTODOC_SCRIPT=docs/generate_autodoc.py

Expand All @@ -11,7 +14,7 @@ test:
pytest --dbs="sqlite,postgresql" siuba/

test-travis:
#py.test --nbval $(filter-out %postgres.ipynb, $(NOTEBOOK_TESTS))
py.test --nbval-lax $(filter-out %postgres.ipynb, $(NOTEBOOK_TESTS))
pytest --dbs="sqlite,postgresql" siuba/

examples/%.ipynb:
Expand Down
186 changes: 91 additions & 95 deletions examples/case-iris-select.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"> 📢: **This document was used during early development of siuba. See the [select docs](https://siuba.readthedocs.io/en/latest/api_table_core/03_select.html).**\n",
"\n",
"Many different ways of selecting columns from the iris dataset. "
]
},
Expand All @@ -23,8 +25,6 @@
"from siuba import *\n",
"import pandas as pd\n",
"\n",
"from sklearn import datasets\n",
"\n",
"pd.set_option('max_rows', 5)"
]
},
Expand All @@ -34,9 +34,21 @@
"metadata": {},
"outputs": [],
"source": [
"iris = datasets.load_iris()\n",
"df_iris = pd.DataFrame(iris.data, columns = iris.feature_names)\n",
"df_iris['species'] = iris.target_names[iris.target]"
"## Rather than import the iris data from sklearn, I am just including the\n",
"## first 5 rows.\n",
"\n",
"# from sklearn import datasets\n",
"# iris = datasets.load_iris()\n",
"# df_iris = pd.DataFrame(iris.data, columns = iris.feature_names)\n",
"# df_iris['species'] = iris.target_names[iris.target]\n",
"\n",
"df_iris = pd.DataFrame({\n",
" 'sepal length (cm)': [5.1, 4.9, 4.7, 4.6, 5.0],\n",
" 'sepal width (cm)': [3.5, 3.0, 3.2, 3.1, 3.6],\n",
" 'petal length (cm)': [1.4, 1.4, 1.3, 1.5, 1.4],\n",
" 'petal width (cm)': [0.2, 0.2, 0.2, 0.2, 0.2],\n",
" 'species': ['setosa', 'setosa', 'setosa', 'setosa', 'setosa']\n",
"})"
]
},
{
Expand Down Expand Up @@ -90,50 +102,47 @@
" <td>4.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <th>2</th>\n",
" <td>3.2</td>\n",
" <td>1.3</td>\n",
" <td>0.2</td>\n",
" <td>setosa</td>\n",
" <td>4.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>148</th>\n",
" <td>3.4</td>\n",
" <td>5.4</td>\n",
" <td>2.3</td>\n",
" <td>virginica</td>\n",
" <td>6.2</td>\n",
" <th>3</th>\n",
" <td>3.1</td>\n",
" <td>1.5</td>\n",
" <td>0.2</td>\n",
" <td>setosa</td>\n",
" <td>4.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td>3.0</td>\n",
" <td>5.1</td>\n",
" <td>1.8</td>\n",
" <td>virginica</td>\n",
" <td>5.9</td>\n",
" <th>4</th>\n",
" <td>3.6</td>\n",
" <td>1.4</td>\n",
" <td>0.2</td>\n",
" <td>setosa</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>150 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" sepal width (cm) petal length (cm) petal width (cm) species \\\n",
"0 3.5 1.4 0.2 setosa \n",
"1 3.0 1.4 0.2 setosa \n",
".. ... ... ... ... \n",
"148 3.4 5.4 2.3 virginica \n",
"149 3.0 5.1 1.8 virginica \n",
"\n",
" sepal length (cm) \n",
"0 5.1 \n",
"1 4.9 \n",
".. ... \n",
"148 6.2 \n",
"149 5.9 \n",
" sepal width (cm) petal length (cm) petal width (cm) species \\\n",
"0 3.5 1.4 0.2 setosa \n",
"1 3.0 1.4 0.2 setosa \n",
"2 3.2 1.3 0.2 setosa \n",
"3 3.1 1.5 0.2 setosa \n",
"4 3.6 1.4 0.2 setosa \n",
"\n",
"[150 rows x 5 columns]"
" sepal length (cm) \n",
"0 5.1 \n",
"1 4.9 \n",
"2 4.7 \n",
"3 4.6 \n",
"4 5.0 "
]
},
"execution_count": 3,
Expand Down Expand Up @@ -482,37 +491,34 @@
" <td>setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <th>2</th>\n",
" <td>4.7</td>\n",
" <td>3.2</td>\n",
" <td>setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>148</th>\n",
" <td>6.2</td>\n",
" <td>3.4</td>\n",
" <td>virginica</td>\n",
" <th>3</th>\n",
" <td>4.6</td>\n",
" <td>3.1</td>\n",
" <td>setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td>5.9</td>\n",
" <td>3.0</td>\n",
" <td>virginica</td>\n",
" <th>4</th>\n",
" <td>5.0</td>\n",
" <td>3.6</td>\n",
" <td>setosa</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>150 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" sepal length (cm) sepal width (cm) species\n",
"0 5.1 3.5 setosa\n",
"1 4.9 3.0 setosa\n",
".. ... ... ...\n",
"148 6.2 3.4 virginica\n",
"149 5.9 3.0 virginica\n",
"\n",
"[150 rows x 3 columns]"
" sepal length (cm) sepal width (cm) species\n",
"0 5.1 3.5 setosa\n",
"1 4.9 3.0 setosa\n",
"2 4.7 3.2 setosa\n",
"3 4.6 3.1 setosa\n",
"4 5.0 3.6 setosa"
]
},
"execution_count": 6,
Expand Down Expand Up @@ -576,50 +582,40 @@
" <td>setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <th>2</th>\n",
" <td>4.7</td>\n",
" <td>3.2</td>\n",
" <td>1.3</td>\n",
" <td>0.2</td>\n",
" <td>setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>148</th>\n",
" <td>6.2</td>\n",
" <td>3.4</td>\n",
" <td>5.4</td>\n",
" <td>2.3</td>\n",
" <td>virginica</td>\n",
" <th>3</th>\n",
" <td>4.6</td>\n",
" <td>3.1</td>\n",
" <td>1.5</td>\n",
" <td>0.2</td>\n",
" <td>setosa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149</th>\n",
" <td>5.9</td>\n",
" <td>3.0</td>\n",
" <td>5.1</td>\n",
" <td>1.8</td>\n",
" <td>virginica</td>\n",
" <th>4</th>\n",
" <td>5.0</td>\n",
" <td>3.6</td>\n",
" <td>1.4</td>\n",
" <td>0.2</td>\n",
" <td>setosa</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>150 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" sepal length (cm) sepal width (cm) petal_length petal width (cm) \\\n",
"0 5.1 3.5 1.4 0.2 \n",
"1 4.9 3.0 1.4 0.2 \n",
".. ... ... ... ... \n",
"148 6.2 3.4 5.4 2.3 \n",
"149 5.9 3.0 5.1 1.8 \n",
"\n",
" species \n",
"0 setosa \n",
"1 setosa \n",
".. ... \n",
"148 virginica \n",
"149 virginica \n",
"\n",
"[150 rows x 5 columns]"
" sepal length (cm) sepal width (cm) petal_length petal width (cm) species\n",
"0 5.1 3.5 1.4 0.2 setosa\n",
"1 4.9 3.0 1.4 0.2 setosa\n",
"2 4.7 3.2 1.3 0.2 setosa\n",
"3 4.6 3.1 1.5 0.2 setosa\n",
"4 5.0 3.6 1.4 0.2 setosa"
]
},
"execution_count": 7,
Expand Down Expand Up @@ -663,7 +659,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
"version": "3.6.8"
},
"toc": {
"base_numbering": 1,
Expand All @@ -680,5 +676,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}
Loading