Some simple machine learning examples. Default parameters are used for all algorithms
The dataset contains a set of 150 records under 5 attributes - Petal Length , Petal Width , Sepal Length , Sepal width and Class.
https://en.wikipedia.org/wiki/Iris_flower_data_set
7 different clustering algorithms with Iris dataset
- K-Means
- Fuzzy C-Means
- Multi-Gaussian with Expectation-Maximization
- Density-based
- Hierarchical
- Self-Organising Maps
- Spectral
R source code: https://www.kaggle.com/coolman/different-clustering-techniques-r
8 different classification algorithms with Iris dataset
- Decision tree
- RandomForest - Ensemble method
- XGBoost
- SVM (Support Vector Machine) Classifier
- Nearest Neighbors Classifier
- SGD (Stochastic Gradient Descent) classifier
- Gaussian Naive Bayes
- MLP (Multi-layer Perceptron) Neural network
Python Source code: https://www.kaggle.com/coolman/different-classification-techniques-python
3 different anomaly detection algorithms with Iris dataset
- DBSCAN
- Isolation Forest
- LocalOutlierFactor
Python Source code: https://www.kaggle.com/coolman/different-anomaly-detection-techniques-python