- Set up the operational system (Manjaro)
- Configure my personal Git
- Download the project
- Install and configure Pycharm
- Configure a virtual environment
- Install libraries and dependencies
- Install Python
- Install Sktime
- Install other dependencies
- Create a setup file to config the environment
- Download all timeseries datasets
- Centralize the receiving of datasets
- Test the experiments
- Create a main with all experiments
- Organize the folder's project
- Clean up the code of each variant
- Create a Abstract Class called Variant to keep duplicated codes
- Rewrite the ensemble variant and the function _fit_discretizers()
- ...
fit( data, labels ){
resolutions = resolutions_definition( data )
number_of_samples_per_class = 2
while( resolutions.size > 1 ){
samples = get_samples( data, labels, number_of_samples_per_class )
word_sequences = discretization_extraction( samples, resolutions.windows )
ngram_sequences = ngrams_definition( word_sequences, resolutions )
bag_of_bags = frequency_counter( ngram_sequences )
resolutions_rank = calcule_separability( bag_of_bags, resolutions )
resolutions = get_first_half( resolutions_rank )
number_of_samples_per_class = 2*number_of_samples_per_class
}
word_sequences = discretization_extraction( data, resolutions.windows )
ngram_sequences = ngrams_definition( word_sequences, resolutions )
bag_of_bags = frequency_counter( ngram_sequences )
clf = new LogisticRegression()
clf = clf.fit( bag_of_bags, labels )
}