-
Notifications
You must be signed in to change notification settings - Fork 14
7 autoplot methods
Martin edited this page Jun 28, 2019
·
1 revision
The objects used in this document can also be plotted using the autoplot methods provided by ggparty.
data("WeatherPlay", package = "partykit")
sp_o <- partysplit(1L, index = 1:3)
sp_h <- partysplit(3L, breaks = 75)
sp_w <- partysplit(4L, index = 1:2)
pn <- partynode(1L, split = sp_o, kids = list(
partynode(2L, split = sp_h, kids = list(
partynode(3L, info = "yes"),
partynode(4L, info = "no"))),
partynode(5L, info = "yes"),
partynode(6L, split = sp_w, kids = list(
partynode(7L, info = "yes"),
partynode(8L, info = "no")))))
py <- party(pn, WeatherPlay)
autoplot(py)
n1 <- partynode(id = 1L, split = sp_o, kids = lapply(2L:4L, partynode))
t2 <- party(n1,
data = WeatherPlay,
fitted = data.frame(
"(fitted)" = fitted_node(n1, data = WeatherPlay),
"(response)" = WeatherPlay$play,
check.names = FALSE),
terms = terms(play ~ ., data = WeatherPlay)
)
t2 <- as.constparty(t2)
autoplot(t2)
## Boston housing data
data("BostonHousing", package = "mlbench")
BostonHousing <- transform(BostonHousing,
chas = factor(chas, levels = 0:1, labels = c("no", "yes")),
rad = factor(rad, ordered = TRUE))
## linear model tree
bh_tree <- lmtree(medv ~ log(lstat) + I(rm^2) | zn +
indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
data = BostonHousing, minsize = 40)
autoplot(bh_tree, plot_var = "log(lstat)", show_fit = FALSE)
autoplot(bh_tree, plot_var = "I(rm^2)", show_fit = TRUE)
data("GBSG2", package = "TH.data")
GBSG2$time <- GBSG2$time/365
library("survival")
wbreg <- function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
survreg(y ~ 0 + x, weights = weights, dist = "weibull", ...)
}
logLik.survreg <- function(object, ...)
structure(object$loglik[2], df = sum(object$df), class = "logLik")
gbsg2_tree <- mob(Surv(time, cens) ~ horTh + pnodes | age + tsize +
tgrade + progrec + estrec + menostat, data = GBSG2,
fit = wbreg, control = mob_control(minsize = 80))
autoplot(gbsg2_tree, plot_var = “pnodes”) ```
data("TeachingRatings", package = "AER")
tr <- subset(TeachingRatings, credits == "more")
tr_tree <- lmtree(eval ~ beauty | minority + age + gender + division + native +
tenure, data = tr, weights = students, caseweights = FALSE)
autoplot(tr_tree)