Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rename DataDistribution to EmpiricalDistribution #146

Merged
merged 1 commit into from
Oct 27, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/distributions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -141,10 +141,10 @@ Deterministic
:members:
:undoc-members:

DataDistribution
EmpiricalDistribution
~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: DataDistribution
.. autoclass:: EmpiricalDistribution
:members:
:undoc-members:

Expand Down
6 changes: 3 additions & 3 deletions examples/mmd_vae.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"from pixyz.distributions import Normal, Bernoulli, DataDistribution\n",
"from pixyz.distributions import Normal, Bernoulli, EmpiricalDistribution\n",
"from pixyz.losses import CrossEntropy, MMD\n",
"from pixyz.models import Model\n",
"from pixyz.utils import print_latex"
Expand Down Expand Up @@ -112,7 +112,7 @@
"prior = Normal(loc=torch.tensor(0.), scale=torch.tensor(1.),\n",
" var=[\"z\"], features_shape=[z_dim], name=\"p_{prior}\").to(device)\n",
"\n",
"p_data = DataDistribution([\"x\"]).to(device)\n",
"p_data = EmpiricalDistribution([\"x\"]).to(device)\n",
"q_mg = (q*p_data).marginalize_var(\"x\")\n",
"q_mg.name = \"q\""
]
Expand Down Expand Up @@ -169,7 +169,7 @@
"Distribution:\n",
" q(z) = \\int q(z|x)p_{data}(x)dx\n",
"Network architecture:\n",
" DataDistribution(\n",
" EmpiricalDistribution(\n",
" name=p_{data}, distribution_name=Data distribution,\n",
" var=['x'], cond_var=[], input_var=['x'], features_shape=torch.Size([])\n",
" )\n",
Expand Down
4 changes: 2 additions & 2 deletions pixyz/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@

from .special_distributions import (
Deterministic,
DataDistribution
EmpiricalDistribution
)

from .distributions import (
Expand All @@ -37,7 +37,7 @@
'Distribution',
'CustomProb',
'Deterministic',
'DataDistribution',
'EmpiricalDistribution',
'Normal',
'Bernoulli',
'RelaxedBernoulli',
Expand Down
8 changes: 4 additions & 4 deletions pixyz/distributions/special_distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def has_reparam(self):
return True


class DataDistribution(Distribution):
class EmpiricalDistribution(Distribution):
"""
Data distribution.

Expand All @@ -74,12 +74,12 @@ class DataDistribution(Distribution):
Examples
--------
>>> import torch
>>> p = DataDistribution(var=["x"])
>>> p = EmpiricalDistribution(var=["x"])
>>> print(p)
Distribution:
p_{data}(x)
Network architecture:
DataDistribution(
EmpiricalDistribution(
name=p_{data}, distribution_name=Data distribution,
var=['x'], cond_var=[], input_var=['x'], features_shape=torch.Size([])
)
Expand Down Expand Up @@ -111,7 +111,7 @@ def get_log_prob(self, x_dict, sum_features=True, feature_dims=None):
@property
def input_var(self):
"""
In DataDistribution, `input_var` is same as `var`.
In EmpiricalDistribution, `input_var` is same as `var`.
"""

return self.var
Expand Down
18 changes: 9 additions & 9 deletions pixyz/losses/adversarial_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ class AdversarialJensenShannon(AdversarialLoss):
Examples
--------
>>> import torch
>>> from pixyz.distributions import Deterministic, DataDistribution, Normal
>>> from pixyz.distributions import Deterministic, EmpiricalDistribution, Normal
>>> # Generator
>>> class Generator(Deterministic):
... def __init__(self):
Expand Down Expand Up @@ -166,12 +166,12 @@ class AdversarialJensenShannon(AdversarialLoss):
(model): Linear(in_features=32, out_features=64, bias=True)
)
>>> # Data distribution (dummy distribution)
>>> p_data = DataDistribution(["x"])
>>> p_data = EmpiricalDistribution(["x"])
>>> print(p_data)
Distribution:
p_{data}(x)
Network architecture:
DataDistribution(
EmpiricalDistribution(
name=p_{data}, distribution_name=Data distribution,
var=['x'], cond_var=[], input_var=['x'], features_shape=torch.Size([])
)
Expand Down Expand Up @@ -303,7 +303,7 @@ class AdversarialKullbackLeibler(AdversarialLoss):
Examples
--------
>>> import torch
>>> from pixyz.distributions import Deterministic, DataDistribution, Normal
>>> from pixyz.distributions import Deterministic, EmpiricalDistribution, Normal
>>> # Generator
>>> class Generator(Deterministic):
... def __init__(self):
Expand Down Expand Up @@ -333,12 +333,12 @@ class AdversarialKullbackLeibler(AdversarialLoss):
(model): Linear(in_features=32, out_features=64, bias=True)
)
>>> # Data distribution (dummy distribution)
>>> p_data = DataDistribution(["x"])
>>> p_data = EmpiricalDistribution(["x"])
>>> print(p_data)
Distribution:
p_{data}(x)
Network architecture:
DataDistribution(
EmpiricalDistribution(
name=p_{data}, distribution_name=Data distribution,
var=['x'], cond_var=[], input_var=['x'], features_shape=torch.Size([])
)
Expand Down Expand Up @@ -461,7 +461,7 @@ class AdversarialWassersteinDistance(AdversarialJensenShannon):
Examples
--------
>>> import torch
>>> from pixyz.distributions import Deterministic, DataDistribution, Normal
>>> from pixyz.distributions import Deterministic, EmpiricalDistribution, Normal
>>> # Generator
>>> class Generator(Deterministic):
... def __init__(self):
Expand Down Expand Up @@ -491,12 +491,12 @@ class AdversarialWassersteinDistance(AdversarialJensenShannon):
(model): Linear(in_features=32, out_features=64, bias=True)
)
>>> # Data distribution (dummy distribution)
>>> p_data = DataDistribution(["x"])
>>> p_data = EmpiricalDistribution(["x"])
>>> print(p_data)
Distribution:
p_{data}(x)
Network architecture:
DataDistribution(
EmpiricalDistribution(
name=p_{data}, distribution_name=Data distribution,
var=['x'], cond_var=[], input_var=['x'], features_shape=torch.Size([])
)
Expand Down
4 changes: 2 additions & 2 deletions pixyz/models/gan.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from ..models.model import Model
from ..losses import AdversarialJensenShannon
from ..distributions import DataDistribution
from ..distributions import EmpiricalDistribution


class GAN(Model):
Expand Down Expand Up @@ -105,7 +105,7 @@ def __init__(self, p, discriminator,

# set distributions (for training)
distributions = [p]
p_data = DataDistribution(p.var)
p_data = EmpiricalDistribution(p.var)

# set losses
loss = AdversarialJensenShannon(p_data, p, discriminator,
Expand Down