Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

Commit

Permalink
Search space zoo example fix (#2801)
Browse files Browse the repository at this point in the history
  • Loading branch information
tabVersion authored Aug 24, 2020
1 parent 593d2d2 commit e408e14
Show file tree
Hide file tree
Showing 5 changed files with 5 additions and 9 deletions.
2 changes: 1 addition & 1 deletion examples/nas/search_space_zoo/darts_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from utils import accuracy

from nni.nas.pytorch.search_space_zoo import DartsCell
from darts_search_space import DartsStackedCells
from darts_stack_cells import DartsStackedCells

logger = logging.getLogger('nni')

Expand Down
4 changes: 2 additions & 2 deletions examples/nas/search_space_zoo/darts_stack_cells.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# Licensed under the MIT license.

import torch.nn as nn
import ops
from nni.nas.pytorch.search_space_zoo.darts_ops import DropPath


class DartsStackedCells(nn.Module):
Expand Down Expand Up @@ -79,5 +79,5 @@ def forward(self, x):

def drop_path_prob(self, p):
for module in self.modules():
if isinstance(module, ops.DropPath):
if isinstance(module, DropPath):
module.p = p
2 changes: 0 additions & 2 deletions examples/nas/search_space_zoo/enas_macro_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,6 @@ def forward(self, x):
parser = ArgumentParser("enas")
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--log-frequency", default=10, type=int)
# parser.add_argument("--search-for", choices=["macro", "micro"], default="macro")
parser.add_argument("--epochs", default=None, type=int, help="Number of epochs (default: macro 310, micro 150)")
parser.add_argument("--visualization", default=False, action="store_true")
args = parser.parse_args()
Expand All @@ -71,7 +70,6 @@ def forward(self, x):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9, weight_decay=1.0E-4)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0.001)

trainer = enas.EnasTrainer(model,
loss=criterion,
metrics=accuracy,
Expand Down
3 changes: 1 addition & 2 deletions examples/nas/search_space_zoo/enas_micro_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def __init__(self, num_layers=2, num_nodes=5, out_channels=24, in_channels=3, nu
reduction = False
if layer_id in pool_layers:
c_cur, reduction = c_p * 2, True
self.layers.append(ENASMicroLayer(self.layers, num_nodes, c_pp, c_p, c_cur, reduction))
self.layers.append(ENASMicroLayer(num_nodes, c_pp, c_p, c_cur, reduction))
if reduction:
c_pp = c_p = c_cur
c_pp, c_p = c_p, c_cur
Expand Down Expand Up @@ -98,7 +98,6 @@ def forward(self, x):
parser = ArgumentParser("enas")
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--log-frequency", default=10, type=int)
# parser.add_argument("--search-for", choices=["macro", "micro"], default="macro")
parser.add_argument("--epochs", default=None, type=int, help="Number of epochs (default: macro 310, micro 150)")
parser.add_argument("--visualization", default=False, action="store_true")
args = parser.parse_args()
Expand Down
3 changes: 1 addition & 2 deletions src/sdk/pynni/nni/nas/pytorch/search_space_zoo/enas_cell.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,6 @@ class ENASMicroLayer(nn.Module):
"""
def __init__(self, num_nodes, in_channels_pp, in_channels_p, out_channels, reduction):
super().__init__()
print(in_channels_pp, in_channels_p, out_channels, reduction)
self.reduction = reduction
if self.reduction:
self.reduce0 = FactorizedReduce(in_channels_pp, out_channels, affine=False)
Expand Down Expand Up @@ -160,7 +159,7 @@ def __init__(self, key, prev_labels, in_filters, out_filters):
PoolBranch('avg', in_filters, out_filters, 3, 1, 1),
PoolBranch('max', in_filters, out_filters, 3, 1, 1)
])
if prev_labels > 0:
if prev_labels:
self.skipconnect = mutables.InputChoice(choose_from=prev_labels, n_chosen=None)
else:
self.skipconnect = None
Expand Down

0 comments on commit e408e14

Please sign in to comment.