Skip to content

mikejohnson51/hyRelease

Repository files navigation

hyRelease

hyRelease generates release hydrofabric artifacts for use in NextGen. The types of data in each release is actively being discussed here.

For now, we are generating releases for HUC01 units and CAMELS basins. These are stored in a Lynker Technologies AWS bucket. If you have credentials to these, data can be accessed in a number of ways.

A general approach (implemented in R, but general in nature) in the following way for an example CAMELS basin draining to NWIS gage 01435000.

Set up Credentials

In order to connect to S3, you need to authenticate. One way easiest method is to set environment variables in a working session like this:

Sys.setenv("AWS_ACCESS_KEY_ID"     = "XXXXX",
           "AWS_SECRET_ACCESS_KEY" = "XXXXX",
           "AWS_DEFAULT_REGION"    = "us-east-2")

Or sourcing it from a private file:

source("private/aws.R")

Or setting them to the root of your system.

However you authenticate, our resources are stored in us-east-2 but your access key IDs and secrets are individual.

Getting data!

For NGEN applications a number of file formats are needed including CSV, JSON, geoJSON, and gpkg. The first three of these are files that can be read directly, while a gpkg has some intereesting database capabilites.

Read files

First, lets see what files are in our CAMEL “bucket”. AWS does not have an explict folder structure so files are defined by a bucket, and can be reduced by the file prefix. So, lets first find the files in the CAMELS/gage_0143500 “directory”.

library(aws.s3)
library(data.table)
library(dplyr)

rbindlist(get_bucket(bucket = "formulations-dev", prefix = "CAMELS/gage_01435000"))$Key
#>  [1] "CAMELS/gage_01435000/"                                 
#>  [2] "CAMELS/gage_01435000/crosswalks/"                      
#>  [3] "CAMELS/gage_01435000/crosswalks/crosswalk-mapping.json"
#>  [4] "CAMELS/gage_01435000/graph/"                           
#>  [5] "CAMELS/gage_01435000/graph/catchment_edge_list.json"   
#>  [6] "CAMELS/gage_01435000/graph/flowpath_edge_list.json"    
#>  [7] "CAMELS/gage_01435000/graph/waterbody_edge_list.json"   
#>  [8] "CAMELS/gage_01435000/parameters/"                      
#>  [9] "CAMELS/gage_01435000/parameters/camels.csv"            
#> [10] "CAMELS/gage_01435000/parameters/nwm.csv"               
#> [11] "CAMELS/gage_01435000/parameters/waterbody-params.json" 
#> [12] "CAMELS/gage_01435000/spatial/"                         
#> [13] "CAMELS/gage_01435000/spatial/catchment_data.geojson"   
#> [14] "CAMELS/gage_01435000/spatial/flowpath_data.geojson"    
#> [15] "CAMELS/gage_01435000/spatial/hydrofabric.gpkg"         
#> [16] "CAMELS/gage_01435000/spatial/nexus_data.geojson"

Onec we know what files are avaialble, we can read any of them by selecting the correct driver:

CSV

The pattern for reading files is identical regardless of format, the correct reader simply needs to be defined:

csv_data = s3read_using(fread, object = "s3://formulations-dev/CAMELS/gage_01435000/parameters/nwm.csv")
glimpse(csv_data)
#> Rows: 17
#> Columns: 13
#> $ ID                             <chr> "cat-1", "cat-10", "cat-11", "cat-12", …
#> $ gw_Coeff                       <dbl> 0.005, 0.005, 0.005, 0.005, 0.005, 0.00…
#> $ gw_Zmax                        <dbl> 34.75653, 241.20125, 241.20125, 154.072…
#> $ gw_Expon                       <int> 1, 6, 6, 3, 6, 1, 6, 6, 3, 6, 3, 3, 3, …
#> $ `sp_bexp_soil_layers_stag=1`   <int> 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, …
#> $ `sp_dksat_soil_layers_stag=1`  <dbl> 1.651e-06, 5.490e-06, 4.064e-06, 4.625e…
#> $ `sp_psisat_soil_layers_stag=1` <dbl> 0.7590000, 0.4473704, 0.4573333, 0.4573…
#> $ `sp_smcmax_soil_layers_stag=1` <dbl> 0.5700271, 0.4202248, 0.4217215, 0.4265…
#> $ `sp_smcwlt_soil_layers_stag=1` <dbl> 0.08400000, 0.07142511, 0.07182244, 0.0…
#> $ sp_slope                       <dbl> 0.06858038, 0.06552054, 0.07023233, 0.0…
#> $ wf_IVGTYP                      <int> 11, 15, 11, 15, 11, 11, 11, 11, 11, 11,…
#> $ wf_ISLTYP                      <int> 4, 6, 6, 6, 6, 4, 6, 6, 4, 4, 4, 4, 6, …
#> $ fd_LKSATFAC                    <dbl> 986.9935, 1511.3626, 1683.4473, 1090.86…

JSON

library(jsonlite)

json_data = s3read_using(read_json, object = "s3://formulations-dev/CAMELS/gage_01435000/parameters/waterbody-params.json", simplifyVector = TRUE)
glimpse(json_data[[1]])
#> Rows: 1
#> Columns: 21
#> $ lengthMap    <chr> "4147956.1"
#> $ toID         <int> 100000018
#> $ Hydroseq     <int> 1
#> $ member_COMID <list> "4147956"
#> $ LevelPathID  <int> 1
#> $ length_km    <dbl> 5.0756
#> $ areasqkm     <dbl> 11.4347
#> $ gages        <chr> "01435000"
#> $ Qi           <int> 0
#> $ MusK         <int> 3600
#> $ MusX         <dbl> 0.2
#> $ n            <dbl> 0.055
#> $ So           <dbl> 0.006
#> $ ChSlp        <dbl> 0.36
#> $ BtmWdth      <dbl> 8.608
#> $ time         <int> 0
#> $ Kchan        <int> 0
#> $ nCC          <dbl> 0.11
#> $ TopWdthCC    <dbl> 43.041
#> $ TopWdth      <dbl> 14.347
#> $ Length_m     <dbl> 5075.585

geoJSON

library(sf)

## READ from geoJSON
cat_data = s3read_using(read_sf, object = "s3://formulations-dev/CAMELS/gage_01435000/spatial/catchment_data.geojson")
plot(cat_data)

Geopackage

## READ from GPKG
### find available layers
s3read_using(st_layers, object = "s3://formulations-dev/CAMELS/gage_01435000/spatial/hydrofabric.gpkg")
#> Driver: GPKG 
#> Available layers:
#>   layer_name geometry_type features fields
#> 1 catchments       Polygon       17      3
#> 2  flowpaths   Line String       17      7
#> 3      nexus         Point       11      2

### call flowpaths layer
fp_data = s3read_using(st_read, object = "s3://formulations-dev/CAMELS/gage_01435000/spatial/hydrofabric.gpkg", "flowpaths")
#> Reading layer `flowpaths' from data source 
#>   `/private/var/folders/jc/ys3x7k814b9dnx208718f07m0000gn/T/RtmpSSuWOR/filea92274758c4c.gpkg' 
#>   using driver `GPKG'
#> Simple feature collection with 17 features and 7 fields
#> Geometry type: LINESTRING
#> Dimension:     XY
#> Bounding box:  xmin: 1746257 ymin: 2294474 xmax: 1763585 ymax: 2313553
#> Projected CRS: NAD83 / Conus Albers


### plot and add nexus layer
{
  plot(fp_data$geom)
  plot(s3read_using(st_read, object = "s3://formulations-dev/CAMELS/gage_01435000/spatial/hydrofabric.gpkg", "nexus"), add = TRUE, pch = 16, col = "red")
}

#> Reading layer `nexus' from data source 
#>   `/private/var/folders/jc/ys3x7k814b9dnx208718f07m0000gn/T/RtmpSSuWOR/filea922514e0d4f.gpkg' 
#>   using driver `GPKG'
#> Simple feature collection with 11 features and 2 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 1746257 ymin: 2294798 xmax: 1760023 ymax: 2310979
#> Projected CRS: NAD83 / Conus Albers

Super cool!

Because gpkgs are SQLite databases we can pass queries to the resource to extract exactly the features we need. For example, if we want to pull the just the junction nexus locations, we can do so.

junction_nex =  sf::st_read(
    dsn = "/vsis3/formulations-dev/hydrofabric/CONUS-hydrofabric/ngen-release/01a/2021-10-22/hydrofabric.gpkg",
    query = "SELECT * FROM nexus WHERE nexus_type == 'junction'")
#> Reading query `SELECT * FROM nexus WHERE nexus_type == 'junction'' from data source `/vsis3/formulations-dev/hydrofabric/CONUS-hydrofabric/ngen-release/01a/2021-10-22/hydrofabric.gpkg' 
#>   using driver `GPKG'
#> Simple feature collection with 7401 features and 3 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 1827668 ymin: 2222999 xmax: 2242913 ymax: 3012187
#> Projected CRS: NAD83 / Conus Albers


plot(junction_nex$geom, pch = 16, cex = .1)

NOTE: The /vsis3/ path prefix allows us to access the gpkg as a virtual dataset though GDALs capabilites

About

Data fabrics for NGEN

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages