-
Notifications
You must be signed in to change notification settings - Fork 469
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0bea877
commit f113530
Showing
2 changed files
with
206 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
Train your own model | ||
==================== | ||
|
||
If the pretrained models don't meet your specific needs, you have the option to train your own model using the doctr library. | ||
For details on the training process and the necessary data and data format, refer to the following links: | ||
|
||
- `detection <https://github.com/mindee/doctr/tree/main/references/detection#readme>`_ | ||
- `recognition <https://github.com/mindee/doctr/tree/main/references/recognition#readme>`_ | ||
|
||
Loading your custom trained model | ||
--------------------------------- | ||
|
||
This section shows how you can easily load a custom trained model in docTR. | ||
|
||
.. tabs:: | ||
|
||
.. tab:: TensorFlow | ||
|
||
.. code:: python3 | ||
from doctr.models import ocr_predictor, db_resnet50, crnn_vgg16_bn | ||
# Load custom detection model | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False) | ||
det_model.load_weights("<path_to_checkpoint>/weights") | ||
predictor = ocr_predictor(det_arch=det_model, reco_arch="vitstr_small", pretrained=True) | ||
# Load custom recognition model | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False) | ||
reco_model.load_weights("<path_to_checkpoint>/weights") | ||
predictor = ocr_predictor(det_arch="linknet_resnet18", reco_arch=reco_model, pretrained=True) | ||
# Load custom detection and recognition model | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False) | ||
det_model.load_weights("<path_to_checkpoint>/weights") | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False) | ||
reco_model.load_weights("<path_to_checkpoint>/weights") | ||
predictor = ocr_predictor(det_arch=det_model, reco_arch=reco_model, pretrained=False) | ||
.. tab:: PyTorch | ||
|
||
.. code:: python3 | ||
import torch | ||
from doctr.models import ocr_predictor, db_resnet50, crnn_vgg16_bn | ||
# Load custom detection model | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False) | ||
det_params = torch.load('<path_to_pt>', map_location="cpu") | ||
det_model.load_state_dict(det_params) | ||
predictor = ocr_predictor(det_arch=det_model, reco_arch="vitstr_small", pretrained=True) | ||
# Load custom recognition model | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False) | ||
reco_params = torch.load('<path_to_pt>', map_location="cpu") | ||
reco_model.load_state_dict(reco_params) | ||
predictor = ocr_predictor(det_arch="linknet_resnet18", reco_arch=reco_model, pretrained=True) | ||
# Load custom detection and recognition model | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False) | ||
det_params = torch.load('<path_to_pt>', map_location="cpu") | ||
det_model.load_state_dict(det_params) | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False) | ||
reco_params = torch.load('<path_to_pt>', map_location="cpu") | ||
reco_model.load_state_dict(reco_params) | ||
predictor = ocr_predictor(det_arch=det_model, reco_arch=reco_model, pretrained=False) | ||
Load a custom recognition model trained on another vocabulary as the default one (French): | ||
|
||
.. tabs:: | ||
|
||
.. tab:: TensorFlow | ||
|
||
.. code:: python3 | ||
from doctr.models import ocr_predictor, crnn_vgg16_bn | ||
from doctr.datasets import VOCABS | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False, vocab=VOCABS["german"]) | ||
reco_model.load_weights("<path_to_checkpoint>/weights") | ||
predictor = ocr_predictor(det_arch='linknet_resnet18', reco_arch=reco_model, pretrained=True) | ||
.. tab:: PyTorch | ||
|
||
.. code:: python3 | ||
import torch | ||
from doctr.models import ocr_predictor, crnn_vgg16_bn | ||
from doctr.datasets import VOCABS | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False, vocab=VOCABS["german"]) | ||
reco_params = torch.load('<path_to_pt>', map_location="cpu") | ||
reco_model.load_state_dict(reco_params) | ||
predictor = ocr_predictor(det_arch='linknet_resnet18', reco_arch=reco_model, pretrained=True) | ||
Load a custom trained KIE detection model: | ||
|
||
.. tabs:: | ||
|
||
.. tab:: TensorFlow | ||
|
||
.. code:: python3 | ||
from doctr.models import kie_predictor, db_resnet50 | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False, class_names=['total', 'date']) | ||
det_model.load_weights("<path_to_checkpoint>/weights") | ||
kie_predictor(det_arch=det_model, reco_arch='crnn_vgg16_bn', pretrained=True) | ||
.. tab:: PyTorch | ||
|
||
.. code:: python3 | ||
import torch | ||
from doctr.models import kie_predictor, db_resnet50 | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False, class_names=['total', 'date']) | ||
det_params = torch.load('<path_to_pt>', map_location="cpu") | ||
det_model.load_state_dict(det_params) | ||
kie_predictor(det_arch=det_model, reco_arch='crnn_vgg16_bn', pretrained=True) | ||
Load a model with customized Preprocessor: | ||
|
||
.. tabs:: | ||
|
||
.. tab:: TensorFlow | ||
|
||
.. code:: python3 | ||
from doctr.models.predictor import OCRPredictor | ||
from doctr.models.detection.predictor import DetectionPredictor | ||
from doctr.models.recognition.predictor import RecognitionPredictor | ||
from doctr.models.preprocessor import PreProcessor | ||
from doctr.models import db_resnet50, crnn_vgg16_bn | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False) | ||
det_model.load_weights("<path_to_checkpoint>/weights") | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False) | ||
reco_model.load_weights("<path_to_checkpoint>/weights") | ||
det_predictor = DetectionPredictor( | ||
PreProcessor( | ||
(1024, 1024), | ||
batch_size=1, | ||
mean=(0.798, 0.785, 0.772), | ||
std=(0.264, 0.2749, 0.287) | ||
), | ||
det_model | ||
) | ||
reco_predictor = RecognitionPredictor( | ||
PreProcessor( | ||
(32, 128), | ||
preserve_aspect_ratio=True, | ||
batch_size=32, | ||
mean=(0.694, 0.695, 0.693), | ||
std=(0.299, 0.296, 0.301) | ||
), | ||
reco_model | ||
) | ||
predictor = OCRPredictor(det_predictor, reco_predictor) | ||
.. tab:: PyTorch | ||
|
||
.. code:: python3 | ||
import torch | ||
from doctr.models.predictor import OCRPredictor | ||
from doctr.models.detection.predictor import DetectionPredictor | ||
from doctr.models.recognition.predictor import RecognitionPredictor | ||
from doctr.models.preprocessor import PreProcessor | ||
from doctr.models import db_resnet50, crnn_vgg16_bn | ||
det_model = db_resnet50(pretrained=False, pretrained_backbone=False) | ||
det_params = torch.load('<path_to_pt>', map_location="cpu") | ||
det_model.load_state_dict(det_params) | ||
reco_model = crnn_vgg16_bn(pretrained=False, pretrained_backbone=False) | ||
reco_params = torch.load(<path_to_pt>, map_location="cpu") | ||
reco_model.load_state_dict(reco_params) | ||
det_predictor = DetectionPredictor( | ||
PreProcessor( | ||
(1024, 1024), | ||
batch_size=1, | ||
mean=(0.798, 0.785, 0.772), | ||
std=(0.264, 0.2749, 0.287) | ||
), | ||
det_model | ||
) | ||
reco_predictor = RecognitionPredictor( | ||
PreProcessor( | ||
(32, 128), | ||
preserve_aspect_ratio=True, | ||
batch_size=32, | ||
mean=(0.694, 0.695, 0.693), | ||
std=(0.299, 0.296, 0.301) | ||
), | ||
reco_model | ||
) | ||
predictor = OCRPredictor(det_predictor, reco_predictor) |