Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Added dedicated evaluation scripts for text detection #761

Merged
merged 2 commits into from
Dec 27, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 160 additions & 0 deletions references/detection/evaluate_pytorch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# Copyright (C) 2021, Mindee.

# This program is licensed under the Apache License version 2.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details.

import os

os.environ['USE_TORCH'] = '1'

import logging
import multiprocessing as mp
import time
from pathlib import Path

import torch
from torch.utils.data import DataLoader, SequentialSampler
from torchvision.transforms import Normalize
from tqdm import tqdm

from doctr import datasets
from doctr import transforms as T
from doctr.models import detection
from doctr.utils.metrics import LocalizationConfusion


@torch.no_grad()
def evaluate(model, val_loader, batch_transforms, val_metric, amp=False):
# Model in eval mode
model.eval()
# Reset val metric
val_metric.reset()
# Validation loop
val_loss, batch_cnt = 0, 0
for images, targets in tqdm(val_loader):
if torch.cuda.is_available():
images = images.cuda()
images = batch_transforms(images)
targets = [t['boxes'] for t in targets]
if amp:
with torch.cuda.amp.autocast():
out = model(images, targets, return_boxes=True)
else:
out = model(images, targets, return_boxes=True)
# Compute metric
loc_preds = out['preds']
for boxes_gt, boxes_pred in zip(targets, loc_preds):
# Remove scores
val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :-1])

val_loss += out['loss'].item()
batch_cnt += 1

val_loss /= batch_cnt
recall, precision, mean_iou = val_metric.summary()
return val_loss, recall, precision, mean_iou


def main(args):

print(args)

if not isinstance(args.workers, int):
args.workers = min(16, mp.cpu_count())

torch.backends.cudnn.benchmark = True

# Load docTR model
model = detection.__dict__[args.arch](
pretrained=not isinstance(args.resume, str),
assume_straight_pages=not args.rotation
).eval()

if isinstance(args.size, int):
input_shape = (args.size, args.size)
else:
input_shape = model.cfg['input_shape'][-2:]
mean, std = model.cfg['mean'], model.cfg['std']

st = time.time()
ds = datasets.__dict__[args.dataset](
train=True,
download=True,
rotated_bbox=args.rotation,
sample_transforms=T.Resize(input_shape),
)
# Monkeypatch
subfolder = ds.root.split("/")[-2:]
ds.root = str(Path(ds.root).parent.parent)
ds.data = [(os.path.join(*subfolder, name), target) for name, target in ds.data]
_ds = datasets.__dict__[args.dataset](train=False, rotated_bbox=args.rotation)
subfolder = _ds.root.split("/")[-2:]
ds.data.extend([(os.path.join(*subfolder, name), target) for name, target in _ds.data])

test_loader = DataLoader(
ds,
batch_size=args.batch_size,
drop_last=False,
num_workers=args.workers,
sampler=SequentialSampler(ds),
pin_memory=torch.cuda.is_available(),
collate_fn=ds.collate_fn,
)
print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in "
f"{len(test_loader)} batches)")

batch_transforms = Normalize(mean=mean, std=std)

# Resume weights
if isinstance(args.resume, str):
print(f"Resuming {args.resume}")
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint)

# GPU
if isinstance(args.device, int):
if not torch.cuda.is_available():
raise AssertionError("PyTorch cannot access your GPU. Please investigate!")
if args.device >= torch.cuda.device_count():
raise ValueError("Invalid device index")
# Silent default switch to GPU if available
elif torch.cuda.is_available():
args.device = 0
else:
logging.warning("No accessible GPU, targe device set to CPU.")
if torch.cuda.is_available():
torch.cuda.set_device(args.device)
model = model.cuda()

# Metrics
metric = LocalizationConfusion(rotated_bbox=args.rotation, mask_shape=input_shape)

print("Running evaluation")
val_loss, recall, precision, mean_iou = evaluate(model, test_loader, batch_transforms, metric, amp=args.amp)
print(f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | "
f"Mean IoU: {mean_iou:.2%})")


def parse_args():
import argparse
parser = argparse.ArgumentParser(description='docTR evaluation script for text detection (PyTorch)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('arch', type=str, help='text-detection model to evaluate')
parser.add_argument('--dataset', type=str, default="FUNSD", help='Dataset to evaluate on')
parser.add_argument('-b', '--batch_size', type=int, default=2, help='batch size for evaluation')
parser.add_argument('--device', default=None, type=int, help='device')
parser.add_argument('--size', type=int, default=None, help='model input size, H = W')
parser.add_argument('-j', '--workers', type=int, default=None, help='number of workers used for dataloading')
parser.add_argument('--rotation', dest='rotation', action='store_true',
help='inference with rotated bbox')
parser.add_argument('--resume', type=str, default=None, help='Checkpoint to resume')
parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
args = parser.parse_args()

return args


if __name__ == "__main__":
args = parse_args()
main(args)
138 changes: 138 additions & 0 deletions references/detection/evaluate_tensorflow.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# Copyright (C) 2021, Mindee.

# This program is licensed under the Apache License version 2.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details.

import os

os.environ['USE_TF'] = '1'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

import multiprocessing as mp
import time
from pathlib import Path

import tensorflow as tf
from tensorflow.keras import mixed_precision
from tqdm import tqdm

gpu_devices = tf.config.experimental.list_physical_devices('GPU')
if any(gpu_devices):
tf.config.experimental.set_memory_growth(gpu_devices[0], True)

from doctr import datasets
from doctr import transforms as T
from doctr.datasets import DataLoader
from doctr.models import detection
from doctr.utils.metrics import LocalizationConfusion


def evaluate(model, val_loader, batch_transforms, val_metric):
# Reset val metric
val_metric.reset()
# Validation loop
val_loss, batch_cnt = 0, 0
for images, targets in tqdm(val_loader):
images = batch_transforms(images)
targets = [t['boxes'] for t in targets]
out = model(images, targets, training=False, return_boxes=True)
# Compute metric
loc_preds = out['preds']
for boxes_gt, boxes_pred in zip(targets, loc_preds):
# Remove scores
val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :-1])

val_loss += out['loss'].numpy()
batch_cnt += 1

val_loss /= batch_cnt
recall, precision, mean_iou = val_metric.summary()
return val_loss, recall, precision, mean_iou


def main(args):

print(args)

if not isinstance(args.workers, int):
args.workers = min(16, mp.cpu_count())

# AMP
if args.amp:
mixed_precision.set_global_policy('mixed_float16')

input_shape = (args.size, args.size, 3) if isinstance(args.size, int) else None

# Load docTR model
model = detection.__dict__[args.arch](
pretrained=isinstance(args.resume, str),
assume_straight_pages=not args.rotation,
input_shape=input_shape,
)

# Resume weights
if isinstance(args.resume, str):
print(f"Resuming {args.resume}")
model.load_weights(args.resume).expect_partial()

input_shape = model.cfg['input_shape'] if input_shape is None else input_shape
mean, std = model.cfg['mean'], model.cfg['std']

st = time.time()
ds = datasets.__dict__[args.dataset](
train=True,
download=True,
rotated_bbox=args.rotation,
sample_transforms=T.Resize(input_shape[:2]),
)
# Monkeypatch
subfolder = ds.root.split("/")[-2:]
ds.root = str(Path(ds.root).parent.parent)
ds.data = [(os.path.join(*subfolder, name), target) for name, target in ds.data]
_ds = datasets.__dict__[args.dataset](train=False, rotated_bbox=args.rotation)
subfolder = _ds.root.split("/")[-2:]
ds.data.extend([(os.path.join(*subfolder, name), target) for name, target in _ds.data])

test_loader = DataLoader(
ds,
batch_size=args.batch_size,
drop_last=False,
num_workers=args.workers,
shuffle=False,
)
print(f"Test set loaded in {time.time() - st:.4}s ({len(ds)} samples in "
f"{len(test_loader)} batches)")

batch_transforms = T.Normalize(mean=mean, std=std)

# Metrics
metric = LocalizationConfusion(rotated_bbox=args.rotation, mask_shape=input_shape[:2])

print("Running evaluation")
val_loss, recall, precision, mean_iou = evaluate(model, test_loader, batch_transforms, metric)
print(f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | "
f"Mean IoU: {mean_iou:.2%})")


def parse_args():
import argparse
parser = argparse.ArgumentParser(description='docTR evaluation script for text detection (TensorFlow)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('arch', type=str, help='text-detection model to evaluate')
parser.add_argument('--dataset', type=str, default="FUNSD", help='Dataset to evaluate on')
parser.add_argument('-b', '--batch_size', type=int, default=2, help='batch size for evaluation')
parser.add_argument('--size', type=int, default=None, help='model input size, H = W')
parser.add_argument('-j', '--workers', type=int, default=None, help='number of workers used for dataloading')
parser.add_argument('--rotation', dest='rotation', action='store_true',
help='inference with rotated bbox')
parser.add_argument('--resume', type=str, default=None, help='Checkpoint to resume')
parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
args = parser.parse_args()

return args


if __name__ == "__main__":
args = parse_args()
main(args)
9 changes: 9 additions & 0 deletions references/detection/results.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
architecture,input_shape,framework,test_set,recall,precision,mean_iou
db_resnet50,"(1024, 1024)",tensorflow,funsd,0.8121,0.8665,0.6681
db_resnet50,"(1024, 1024)",tensorflow,cord,0.9245,0.8962,0.7457
db_mobilenet_v3_large,"(1024, 1024)",tensorflow,funsd,0.783,0.828,0.6396
db_mobilenet_v3_large,"(1024, 1024)",tensorflow,cord,0.8098,0.6657,0.5978
db_resnet50,"(1024, 1024)",pytorch,funsd,0.7917,0.863,0.6652
db_mobilenet_v3_large,"(1024, 1024)",pytorch,funsd,0.8006,0.841,0.6476
db_resnet50,"(1024, 1024)",pytorch,cord,0.9296,0.9123,0.7654
db_mobilenet_v3_large,"(1024, 1024)",pytorch,cord,0.8053,0.6653,0.5976