Skip to content

πŸœπŸ”§ A minimalistic tool to fine-tune your LLMs

License

Notifications You must be signed in to change notification settings

mlabonne/tinytuner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

29 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸœπŸ”§ TinyTuner

TinyTuner is a minimalistic fine-tuning solution for large language models, designed for flexibility and ease of use.

Installation

pip install -r requirements.txt

TinyTuner expects to be connected to the Hugging Face Hub (HUGGING_FACE_HUB_TOKEN or huggingface-cli login) and to Weights & Biases (WANDB_API_KEY or wandb login).

Configuration

You can adapt the configurations of TinyTuner by adding your own YAML configuration files in the configs folder. A sample template is provided below:

# Model
model_name: meta-llama/Llama-2-7b-hf
hub_model_id: alpagasus-2-7b-lora

# Dataset
dataset_name: mlabonne/alpagasus
prompt_template: alpaca
max_seq_length: 512
val_set_size: 0.01

# Loading
load_in_8bit: true
load_in_4bit: false
bf16: true
fp16: false
tf32: true

# Lora
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.1
lora_target_modules:
  - q_proj
  - v_proj
lora_fan_in_fan_out:

# Training
learning_rate: 0.00002
micro_batch_size: 1
gradient_accumulation_steps: 8
num_epochs: 3
lr_scheduler_type: cosine
optim: adamw_bnb_8bit
group_by_length: true
warmup_ratio: 0.03
eval_steps: 0.01
save_strategy: epoch
logging_steps: 1
weight_decay: 0
max_grad_norm:
max_steps: -1
gradient_checkpointing: true
xformers: true

# QLoRA
bnb_4bit_compute_dtype: float16
bnb_4bit_use_double_quant: false

# Wandb
wandb_project: tinytuner
wandb_watch:
wandb_log_model:
wandb_run_id:
output_dir: ./logs

# Misc
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
  pad_token: "<pad>"

Usage

Launch the fine-tuning process using the accelerate command with the desired configuration:

accelerate launch finetune.py configs/debug

License

Distributed under the Apache 2.0 License. See LICENSE for more information.

About

πŸœπŸ”§ A minimalistic tool to fine-tune your LLMs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published