forked from logicalclocks/maggy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
featurestore as notebooks upgradable to pipeline jobs (logicalclocks#49)
- Loading branch information
1 parent
800845a
commit 45265db
Showing
6 changed files
with
860 additions
and
0 deletions.
There are no files selected for viewing
156 changes: 156 additions & 0 deletions
156
tensorflow/notebooks/sysml_pipeline/1_feature_group1.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import random\n", | ||
"import pandas as pd\n", | ||
"from pyspark.sql import SQLContext\n", | ||
"sqlContext = SQLContext(sc)\n", | ||
"from pyspark.sql import Row\n", | ||
"from hops import featurestore\n", | ||
"import tensorflow as tf\n", | ||
"from tensorflow import keras\n", | ||
"from tensorflow.keras import layers\n", | ||
"from hops import experiment\n", | ||
"from tensorflow.python.keras.callbacks import TensorBoard\n", | ||
"from hops import tensorboard" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"area_ids = list(range(1,51))\n", | ||
"house_sizes = []\n", | ||
"house_worths = []\n", | ||
"house_ages = []\n", | ||
"house_area_ids = []\n", | ||
"for i in area_ids:\n", | ||
" for j in list(range(1,100)):\n", | ||
" house_sizes.append(abs(np.random.normal()*1000)/i)\n", | ||
" house_worths.append(abs(np.random.normal()*10000)/i)\n", | ||
" house_ages.append(abs(np.random.normal()*10000)/i)\n", | ||
" house_area_ids.append(i)\n", | ||
"house_ids = list(range(len(house_area_ids)))\n", | ||
"houses_for_sale_data = pd.DataFrame({\n", | ||
" 'area_id':house_area_ids,\n", | ||
" 'house_id':house_ids,\n", | ||
" 'house_worth': house_worths,\n", | ||
" 'house_age': house_ages,\n", | ||
" 'house_size': house_sizes\n", | ||
" })\n", | ||
"houses_for_sale_data_spark_df = sqlContext.createDataFrame(houses_for_sale_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_for_sale_data_spark_df.show(5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_for_sale_data_spark_df.printSchema()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sum_houses_for_sale_df = houses_for_sale_data_spark_df.groupBy(\"area_id\").sum()\n", | ||
"count_houses_for_sale_df = houses_for_sale_data_spark_df.groupBy(\"area_id\").count()\n", | ||
"sum_count_houses_for_sale_df = sum_houses_for_sale_df.join(count_houses_for_sale_df, \"area_id\")\n", | ||
"sum_count_houses_for_sale_df = sum_count_houses_for_sale_df \\\n", | ||
" .withColumnRenamed(\"sum(house_age)\", \"sum_house_age\") \\\n", | ||
" .withColumnRenamed(\"sum(house_worth)\", \"sum_house_worth\") \\\n", | ||
" .withColumnRenamed(\"sum(house_size)\", \"sum_house_size\") \\\n", | ||
" .withColumnRenamed(\"count\", \"num_rows\")\n", | ||
"def compute_average_features_house_for_sale(row):\n", | ||
" avg_house_worth = row.sum_house_worth/float(row.num_rows)\n", | ||
" avg_house_size = row.sum_house_size/float(row.num_rows)\n", | ||
" avg_house_age = row.sum_house_age/float(row.num_rows)\n", | ||
" return Row(\n", | ||
" sum_house_worth=row.sum_house_worth, \n", | ||
" sum_house_age=row.sum_house_age,\n", | ||
" sum_house_size=row.sum_house_size,\n", | ||
" area_id = row.area_id,\n", | ||
" avg_house_worth = avg_house_worth,\n", | ||
" avg_house_size = avg_house_size,\n", | ||
" avg_house_age = avg_house_age\n", | ||
" )\n", | ||
"houses_for_sale_features_df = sum_count_houses_for_sale_df.rdd.map(\n", | ||
" lambda row: compute_average_features_house_for_sale(row)\n", | ||
").toDF()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_for_sale_features_df.show(5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_for_sale_features_df.printSchema()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"featurestore.create_featuregroup(\n", | ||
" houses_for_sale_features_df,\n", | ||
" \"houses_for_sale_featuregroup\",\n", | ||
" description=\"aggregate features of houses for sale per area\",\n", | ||
" descriptive_statistics=False,\n", | ||
" feature_correlation=False,\n", | ||
" feature_histograms=False,\n", | ||
" cluster_analysis=False\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "PySpark", | ||
"language": "", | ||
"name": "pysparkkernel" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "python", | ||
"version": 2 | ||
}, | ||
"mimetype": "text/x-python", | ||
"name": "pyspark", | ||
"pygments_lexer": "python2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
149 changes: 149 additions & 0 deletions
149
tensorflow/notebooks/sysml_pipeline/2_feature_group2.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import random\n", | ||
"import pandas as pd\n", | ||
"from pyspark.sql import SQLContext\n", | ||
"sqlContext = SQLContext(sc)\n", | ||
"from pyspark.sql import Row\n", | ||
"from hops import featurestore\n", | ||
"import tensorflow as tf\n", | ||
"from tensorflow import keras\n", | ||
"from tensorflow.keras import layers\n", | ||
"from hops import experiment\n", | ||
"from tensorflow.python.keras.callbacks import TensorBoard\n", | ||
"from hops import tensorboard" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"area_ids = list(range(1,51))\n", | ||
"house_purchased_amounts = []\n", | ||
"house_purchases_bidders = []\n", | ||
"house_purchases_area_ids = []\n", | ||
"for i in area_ids:\n", | ||
" for j in list(range(1,1000)):\n", | ||
" house_purchased_amounts.append(abs(np.random.exponential()*100000)/i)\n", | ||
" house_purchases_bidders.append(int(abs(np.random.exponential()*10)/i))\n", | ||
" house_purchases_area_ids.append(i)\n", | ||
"house_purchase_ids = list(range(len(house_purchases_bidders)))\n", | ||
"houses_sold_data = pd.DataFrame({\n", | ||
" 'area_id':house_purchases_area_ids,\n", | ||
" 'house_purchase_id':house_purchase_ids,\n", | ||
" 'number_of_bidders': house_purchases_bidders,\n", | ||
" 'sold_for_amount': house_purchased_amounts\n", | ||
" })\n", | ||
"houses_sold_data_spark_df = sqlContext.createDataFrame(houses_sold_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_sold_data_spark_df.show(5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_sold_data_spark_df.printSchema()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sum_houses_sold_df = houses_sold_data_spark_df.groupBy(\"area_id\").sum()\n", | ||
"count_houses_sold_df = houses_sold_data_spark_df.groupBy(\"area_id\").count()\n", | ||
"sum_count_houses_sold_df = sum_houses_sold_df.join(count_houses_sold_df, \"area_id\")\n", | ||
"sum_count_houses_sold_df = sum_count_houses_sold_df \\\n", | ||
" .withColumnRenamed(\"sum(number_of_bidders)\", \"sum_number_of_bidders\") \\\n", | ||
" .withColumnRenamed(\"sum(sold_for_amount)\", \"sum_sold_for_amount\") \\\n", | ||
" .withColumnRenamed(\"count\", \"num_rows\")\n", | ||
"def compute_average_features_houses_sold(row):\n", | ||
" avg_num_bidders = row.sum_number_of_bidders/float(row.num_rows)\n", | ||
" avg_sold_for = row.sum_sold_for_amount/float(row.num_rows)\n", | ||
" return Row(\n", | ||
" sum_number_of_bidders=row.sum_number_of_bidders, \n", | ||
" sum_sold_for_amount=row.sum_sold_for_amount,\n", | ||
" area_id = row.area_id,\n", | ||
" avg_num_bidders = avg_num_bidders,\n", | ||
" avg_sold_for = avg_sold_for\n", | ||
" )\n", | ||
"houses_sold_features_df = sum_count_houses_sold_df.rdd.map(\n", | ||
" lambda row: compute_average_features_houses_sold(row)\n", | ||
").toDF()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_sold_features_df.show(5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"houses_sold_features_df.printSchema()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"featurestore.create_featuregroup(\n", | ||
" houses_sold_features_df,\n", | ||
" \"houses_sold_featuregroup\",\n", | ||
" description=\"aggregate features of sold houses per area\",\n", | ||
" descriptive_statistics=False,\n", | ||
" feature_correlation=False,\n", | ||
" feature_histograms=False,\n", | ||
" cluster_analysis=False\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "PySpark", | ||
"language": "", | ||
"name": "pysparkkernel" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "python", | ||
"version": 2 | ||
}, | ||
"mimetype": "text/x-python", | ||
"name": "pyspark", | ||
"pygments_lexer": "python2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
62 changes: 62 additions & 0 deletions
62
tensorflow/notebooks/sysml_pipeline/3_training_dataset.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import random\n", | ||
"import pandas as pd\n", | ||
"from pyspark.sql import SQLContext\n", | ||
"sqlContext = SQLContext(sc)\n", | ||
"from pyspark.sql import Row\n", | ||
"from hops import featurestore\n", | ||
"import tensorflow as tf\n", | ||
"from tensorflow import keras\n", | ||
"from tensorflow.keras import layers\n", | ||
"from hops import experiment\n", | ||
"from tensorflow.python.keras.callbacks import TensorBoard\n", | ||
"from hops import tensorboard" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"features_df = featurestore.get_features([\"avg_house_age\", \"avg_house_size\", \n", | ||
" \"avg_house_worth\", \"avg_num_bidders\", \n", | ||
" \"avg_sold_for\"])\n", | ||
"featurestore.create_training_dataset(\n", | ||
" features_df, \"predict_house_sold_for_dataset\",\n", | ||
" data_format=\"tfrecords\",\n", | ||
" descriptive_statistics=False,\n", | ||
" feature_correlation=False,\n", | ||
" feature_histograms=False,\n", | ||
" cluster_analysis=False\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "PySpark", | ||
"language": "", | ||
"name": "pysparkkernel" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "python", | ||
"version": 2 | ||
}, | ||
"mimetype": "text/x-python", | ||
"name": "pyspark", | ||
"pygments_lexer": "python2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.