Skip to content

mortberg/TypeTheory

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TypeTheory: the mathematical study of type theories, in univalent foundations

Code on C-systems, D-systems, categories with families, comprehension categories, saturation, and the like.

Compilation

Prerequisites

The Coq code depends on the UniMath library, available from http://github.com/UniMath/UniMath. To compile UniMath, follow the installation instructions given there.

You will also need to make UniMath’s coq binaries available for compiling this library. The simplest way is to install them as the default Coq on your system, by calling, from within the UniMath toplevel directory,

$ make install 

and then adding them to your $PATH, either temporarily by running

$ PATH=$PATH:`pwd`/sub/coq/bin/

or permanently by modifying your shell configuration file (usually ~/.bash_profile or similar):

echo "export PATH=\"`pwd`/sub/coq/bin/:\$PATH\"" >> ~/.bash_profile

Alternatively, if you do not want to make UniMath’s Coq your default, you can add an alias for its directory to your shell config file by calling (from within the UniMath toplevel directory)

echo "export UNIBIN=\"`pwd`/sub/coq/bin/\"" >> ~/.bash_profile

and then give the option COQBIN=$UNIBIN when compiling this library.

Compilation of UniMath/TypeTheory

If you have UniMath’s Coq in your path (as per the first suggestion above), then our library can be built just with make from within the toplevel directory.

Otherwise, you need to pass the location of the UniMath coqc binary by hand, as e.g. make COQBIN="~/src/UniMath/sub/coq/bin/" or make COQBIN=$UNIBIN.

Similarly, to use these files in Proof General, you must make sure the correct coqtop is called. This may be either permanently set in the option coq-prog-name, or prompted for at each invocation by setting proof-prog-name-ask.

Contents

The contents of this library are split into several "packages" (subdirectories). We give an overview of the packages and refer to each package's README for details.

  • Articles/

    • currently only two .v files with little content concerning ALV
  • Auxiliary/

    • General background definitions and results that might be upstreamed into UniMath/UniMath
    • Notations for the library
    • currently only two .v files
  • Categories/

    • Background constructions and results on categories; might be upstreamed to UniMath/CategoryTheory
  • ALV1/

    • Definition of CwF’s (a la Fiore) and Split Type-Categories
    • Construction of an equivalence of types between families structures and split type structures
    • Construction of an equivalence of categories between families structures and split type structures
    • Definition of relative universe structures
    • Construction of an equivalence between families structures and relative universe structures on Yoneda
    • Construction of a function from families structures on a category to families structures on its Rezk completion
  • Displayed_Cats/

    • Library on displayed categories: a toolbox for constructing and working with categories of multi-component structures
    • after the integration into UniMath of most of the material, only very little remains
  • ALV2/

    • Construction of equivalences of categories between families structures and split type structures, using displayed categories
  • Instances/

    • for the time being, only the result that presheaves form a type category (providing an "instance" of the concept)
  • Bsystems/

    • the implementation of Vladimir Voevodsky's notion of B system
  • Csystems/

    • the implementation of Vladimir Voevodsky's notion of C system
  • OtherDefs/

    • Various other categorical structures used in the study of type theory

    WARNING: many files in this subdirectory are in a very rough state; use at your own risk.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Coq 99.1%
  • Other 0.9%