CL-with-DST is the first empirical study investigating the effect of different Dynamic Sparse Training (DST) components in Continual learning (CL).
Here, we provide parsing examples for training CL-with-DST.
To train 10-Task CIFAR100 (total number of classes: 100, number of classes per task: 10) with ERK initialization, random growth, 80% sparsity, 100 epoch per task while updating the sparse topology every 400 batches:
python cifar100.py
--dataset cifar100
--num_tasks 10
--num_classes 100
--num_classes_per_task 10
--sparse_init ERK
--growth random
--density 0.2
--epochs 100
--update_frequency 400
To train 10-Task miniImageNet (total number of classes: 100, number of classes per task: 10) with ERK initialization, gradient growth, 80% sparsity, 100 epoch per task while updating the sparse topology every 400 batches:
python miniImageNet100.py
--dataset miniImageNet
--num_tasks 10
--num_classes 100
--num_classes_per_task 10
--sparse_init ERK
--growth gradient
--density 0.2
--epochs 100
--update_frequency 400
More options and explanations can be found in the ArgumentParser().
Note: You should download the miniImageNet dataset to run experiments on that. You can download it from kaggle and place the .zip file named miniImageNet.zip under the data folder.