Skip to content

Commit

Permalink
feat(k8s): Extract helm charts into a separate repo (datahub-project#…
Browse files Browse the repository at this point in the history
  • Loading branch information
Dexter Lee authored Jul 9, 2021
1 parent fd02f71 commit 5cbbebe
Show file tree
Hide file tree
Showing 72 changed files with 176 additions and 3,977 deletions.
149 changes: 14 additions & 135 deletions datahub-kubernetes/README.md
Original file line number Diff line number Diff line change
@@ -1,135 +1,14 @@
---
title: "Deploying with Kubernetes"
---

# Deploying Datahub with Kubernetes

## Introduction
[This directory](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes) provides
the Kubernetes [Helm](https://helm.sh/) charts for deploying [Datahub](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes/datahub) and it's [dependencies](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes/prerequisites)
(Elasticsearch, optionally Neo4j, MySQL, and Kafka) on a Kubernetes cluster.

## Setup
1. Set up a kubernetes cluster
- In a cloud platform of choice like [Amazon EKS](https://aws.amazon.com/eks),
[Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine),
and [Azure Kubernetes Service](https://azure.microsoft.com/en-us/services/kubernetes-service/) OR
- In local environment using [Minikube](https://minikube.sigs.k8s.io/docs/).
Note, more than 7GB of RAM is required to run Datahub and it's dependencies
2. Install the following tools:
- [kubectl](https://kubernetes.io/docs/tasks/tools/) to manage kubernetes resources
- [helm](https://helm.sh/docs/intro/install/) to deploy the resources based on helm charts.
Note, we only support Helm 3.

## Components
Datahub consists of 4 main components: [GMS](https://datahubproject.io/docs/gms),
[MAE Consumer](https://datahubproject.io/docs/metadata-jobs/mae-consumer-job),
[MCE Consumer](https://datahubproject.io/docs/metadata-jobs/mce-consumer-job), and
[Frontend](https://datahubproject.io/docs/datahub-frontend). Kubernetes deployment
for each of the components are defined as subcharts under the main
[Datahub](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes/datahub)
helm chart.

The main components are powered by 4 external dependencies:
- Kafka
- Local DB (MySQL, Postgres, MariaDB)
- Search Index (Elasticsearch)
- Graph Index (Supports either Neo4j or Elasticsearch)

The dependencies must be deployed before deploying Datahub. We created a separate
[chart](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes/prerequisites)
for deploying the dependencies with example configuration. They could also be deployed
separately on-prem or leveraged as managed services. To remove your dependency on Neo4j,
set enabled to false in the `datahub-kubernetes/prerequisites/values.yaml` file.
Then, override the `graph_service_impl` field in `datahub-kubernetes/datahub/values.yaml` to
have the value `elasticsearch` instead of `neo4j`.

## Quickstart
Assuming kubectl context points to the correct kubernetes cluster, first create kubernetes secrets that contain MySQL and Neo4j passwords.

```(shell)
kubectl create secret generic mysql-secrets --from-literal=mysql-root-password=datahub
kubectl create secret generic neo4j-secrets --from-literal=neo4j-password=datahub
```

The above commands sets the passwords to "datahub" as an example. Change to any password of choice.

Second, deploy the dependencies by running the following

```(shell)
(cd prerequisites && helm dep update)
helm install prerequisites prerequisites/
```

Note, after changing the configurations in the values.yaml file, you can run

```(shell)
helm upgrade prerequisites prerequisites/
```

To just redeploy the dependencies impacted by the change.

Run `kubectl get pods` to check whether all the pods for the dependencies are running.
You should get a result similar to below.

```
NAME READY STATUS RESTARTS AGE
elasticsearch-master-0 1/1 Running 0 62m
elasticsearch-master-1 1/1 Running 0 62m
elasticsearch-master-2 1/1 Running 0 62m
prerequisites-cp-schema-registry-cf79bfccf-kvjtv 2/2 Running 1 63m
prerequisites-kafka-0 1/1 Running 2 62m
prerequisites-mysql-0 1/1 Running 1 62m
prerequisites-neo4j-community-0 1/1 Running 0 52m
prerequisites-zookeeper-0 1/1 Running 0 62m
```

deploy Datahub by running the following

```(shell)
helm install datahub datahub/
```

Values in [values.yaml](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes/datahub/values.yaml)
have been preset to point to the dependencies deployed using the [prerequisites](https://github.com/linkedin/datahub/tree/master/datahub-kubernetes/prerequisites)
chart with release name "prerequisites". If you deployed the helm chart using a different release name, update the quickstart-values.yaml file accordingly before installing.

Run `kubectl get pods` to check whether all the datahub pods are running. You should get a result similar to below.

```
NAME READY STATUS RESTARTS AGE
datahub-datahub-frontend-84c58df9f7-5bgwx 1/1 Running 0 4m2s
datahub-datahub-gms-58b676f77c-c6pfx 1/1 Running 0 4m2s
datahub-datahub-mae-consumer-7b98bf65d-tjbwx 1/1 Running 0 4m3s
datahub-datahub-mce-consumer-8c57d8587-vjv9m 1/1 Running 0 4m2s
datahub-elasticsearch-setup-job-8dz6b 0/1 Completed 0 4m50s
datahub-kafka-setup-job-6blcj 0/1 Completed 0 4m40s
datahub-mysql-setup-job-b57kc 0/1 Completed 0 4m7s
elasticsearch-master-0 1/1 Running 0 97m
elasticsearch-master-1 1/1 Running 0 97m
elasticsearch-master-2 1/1 Running 0 97m
prerequisites-cp-schema-registry-cf79bfccf-kvjtv 2/2 Running 1 99m
prerequisites-kafka-0 1/1 Running 2 97m
prerequisites-mysql-0 1/1 Running 1 97m
prerequisites-neo4j-community-0 1/1 Running 0 88m
prerequisites-zookeeper-0 1/1 Running 0 97m
```

You can run the following to expose the frontend locally. Note, you can find the pod name using the command above.
In this case, the datahub-frontend pod name was `datahub-datahub-frontend-84c58df9f7-5bgwx`.

```(shell)
kubectl port-forward <datahub-frontend pod name> 9002:9002
```

You should be able to access the frontend via http://localhost:9002.

Once you confirm that the pods are running well, you can set up ingress for datahub-frontend
to expose the 9002 port to the public.
## Other useful commands

| Command | Description |
|-----|------|
| helm uninstall datahub | Remove DataHub |
| helm ls | List of Helm charts |
| helm history | Fetch a release history |
DataHub Helm Charts
==============================================================================

> **Notice**: As of July 2021, we have migrated the helm charts to a separate [repo](https://github.com/acryldata/datahub-helm)
> to allow automatic releases and better control over the discoverability of the charts.
>
> We have also published the helm charts to `https://helm.datahubproject.io`. You can deploy without referring to the codebase by running the following commands.
>
> ```
> helm repo add datahub https://helm.datahubproject.io
> helm install datahub datahub/datahub
>```
>
> Please contribute any changes to the new repo.
24 changes: 0 additions & 24 deletions datahub-kubernetes/datahub/.helmignore

This file was deleted.

31 changes: 0 additions & 31 deletions datahub-kubernetes/datahub/Chart.yaml

This file was deleted.

73 changes: 0 additions & 73 deletions datahub-kubernetes/datahub/README.md

This file was deleted.

23 changes: 0 additions & 23 deletions datahub-kubernetes/datahub/charts/datahub-frontend/.helmignore

This file was deleted.

21 changes: 0 additions & 21 deletions datahub-kubernetes/datahub/charts/datahub-frontend/Chart.yaml

This file was deleted.

52 changes: 0 additions & 52 deletions datahub-kubernetes/datahub/charts/datahub-frontend/README.md

This file was deleted.

Loading

0 comments on commit 5cbbebe

Please sign in to comment.