This project analyzes order data for 2022 and 2023. The goal is to:
- Analyze order journeys and calculate conversion rates.
- Develop a recommendation system for items displayed on the website's landing page.
- /data/: Raw datasets.
- /src/: Python scripts for ETL, analysis, and recommendations.
- /tests/: Unit tests.
- /database/: The directory where the local database is stored
- Create a virtual environment and install dependencies
make install
- Copy the input csv file to the data directory.
- Activate the virtual environment
make activate
- Run ETL and create the DB:
make setup_db
- Run part A1:
make run-A1
- Run part A2:
make run-A2
- Run part B:
make run-B1
- Run tests:
make test
- (only first time) setup venv:
python -m venv venv/
- Activate the venv:
source venv/bin/activate
- (only first time) install dependencies:
pip install -r requirements.txt
- Run ETL and create the DB:
python src/setup_db.py
- Run part A1:
python src/A1.Volumetrics.py
- Run part A2:
python src/A2.Conversion_rate.py
- Run part B:
python src/B.recommendation_system.py
- Run tests:
pytest tests/