Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature Branch][LLM Testing] Full Testing Harness for LLMs #1216

Merged
merged 20 commits into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
20 commits
Select commit Hold shift + click to select a range
b7133a0
initial commit
dbogunowicz Aug 28, 2023
6c9ab1d
Merge branch 'main' of https://github.com/neuralmagic/deepsparse into…
dbogunowicz Aug 29, 2023
a47f977
initial commit
dbogunowicz Aug 29, 2023
90382bd
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Aug 31, 2023
37116cb
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 5, 2023
87fe78b
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 6, 2023
afb2a2a
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 7, 2023
0477551
[Feature Branch][LLM Testing] Create GroundTruthSource objects (#1219)
dbogunowicz Sep 7, 2023
a13d7a8
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 8, 2023
92163b9
fix tests
dbogunowicz Sep 8, 2023
567337f
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 8, 2023
bfe1b62
Dipika's comments plus adjusting the script to renamed variables
dbogunowicz Sep 11, 2023
27b45e6
Merge branch 'feature/damian/llm_testing_feature_branch' of https://g…
dbogunowicz Sep 11, 2023
f2693ff
remove ORT ground truth
dbogunowicz Sep 12, 2023
dd270a2
add OPT tests
dbogunowicz Sep 12, 2023
c22f5f2
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 12, 2023
a975402
Merge remote-tracking branch 'origin/main' into feature/damian/llm_te…
dbogunowicz Sep 13, 2023
646d6f5
rebase and disable tests in GHA
dbogunowicz Sep 13, 2023
17e63ee
quality
dbogunowicz Sep 13, 2023
d1379b7
Merge branch 'main' into feature/damian/llm_testing_feature_branch
dbogunowicz Sep 13, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 21 additions & 5 deletions src/deepsparse/transformers/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
_MODEL_DIR_CONFIG_NAME = "config.json"
_MODEL_DIR_TOKENIZER_NAME = "tokenizer.json"
_MODEL_DIR_TOKENIZER_CONFIG_NAME = "tokenizer_config.json"
_OPT_TOKENIZER_FILES = ["special_tokens_map.json", "vocab.json", "merges.txt"]


def get_onnx_path(model_path: str) -> str:
Expand Down Expand Up @@ -122,14 +123,29 @@ def get_hugging_face_configs(model_path: str) -> Tuple[str, str]:
config_path = _get_file_parent(
zoo_model.deployment.default.get_file(_MODEL_DIR_CONFIG_NAME).path
)
tokenizer_path = _get_file_parent(
zoo_model.deployment.default.get_file(_MODEL_DIR_TOKENIZER_NAME).path
tokenizer_file = zoo_model.deployment.default.get_file(
_MODEL_DIR_TOKENIZER_NAME
)
tokenizer_config_path = zoo_model.deployment.default.get_file(

tokenizer_config_file = zoo_model.deployment.default.get_file(
_MODEL_DIR_TOKENIZER_CONFIG_NAME
)
if tokenizer_config_path is not None:
tokenizer_config_path.path # trigger download of tokenizer_config

if tokenizer_config_file is not None:
tokenizer_config_path = _get_file_parent(
tokenizer_config_file.path
) # trigger download of tokenizer_config

if tokenizer_file is not None:
tokenizer_path = _get_file_parent(tokenizer_file.path)
else:
# if tokenizer_file is not present, we assume it's the OPT model
# this means that we use tokenizer_config_path instead of tokenizer_path
# and need to download the additional tokenizer files
tokenizer_path = tokenizer_config_path
for file in _OPT_TOKENIZER_FILES:
zoo_model.deployment.default.get_file(file).path

else:
raise ValueError(
f"model_path {model_path} is not a valid directory or zoo stub"
Expand Down
84 changes: 84 additions & 0 deletions tests/deepsparse/transformers/pipelines/helpers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Tuple

import numpy
from transformers import AutoModelForCausalLM, AutoTokenizer


class TorchGroundTruthSource:
"""
An object that generates ground truth logits and
cache states from a prompt. This object can
generate tokens in an autoregressive manner, and thus
will output:
- prompt logits,
- generated logits,
- prompt cache state,
- generated sequence
"""

def __init__(self, num_tokens_to_generate: int, model_name: str):

self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.tokenizer = self._create_tokenizer(model_name)

self.num_tokens_to_generate = num_tokens_to_generate
self.model_name = model_name

def tokenize(self, prompt: str):
return self.tokenizer(prompt, return_tensors="pt")

def __call__(
self, prompt: str
) -> Tuple[numpy.ndarray, numpy.ndarray, List[numpy.ndarray], str]:
# afaik it is not possible to get 'past_key_values' from
# the generate method, so we have to run the model twice
out = self.model.generate(
self.tokenize(prompt).input_ids,
max_new_tokens=self.num_tokens_to_generate,
output_scores=True,
return_dict_in_generate=True,
use_cache=True,
)
generated_text = self.tokenizer.decode(
out.sequences[0], skip_special_tokens=True
)
generated_logits = numpy.concatenate(
[[score.numpy() for score in out.scores]]
).transpose(
1, 0, 2
) # (1, num_tokens_to_generate, vocab_size)

out = self.model(**self.tokenize(prompt))
prompt_logits = out.logits.detach().numpy()[
:, :-1, :
] # (1, prompt_length, vocab_size)
prompt_cache = [
entry.detach().numpy()
for key_value_tuple in out.past_key_values
for entry in key_value_tuple
] # List[(1, num_heads, past_length, head_dim)]

return generated_logits, prompt_logits, prompt_cache, generated_text

@staticmethod
def _create_tokenizer(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.padding_side = "left"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token

return tokenizer
Loading