Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[server] Update server routes to be compliant with MLServer #1237

Merged
merged 16 commits into from
Oct 11, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 91 additions & 21 deletions src/deepsparse/server/server.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from typing import List

import yaml
from pydantic import BaseModel

import uvicorn
from deepsparse.engine import Context
Expand All @@ -43,12 +44,21 @@
log_system_information,
)
from fastapi import FastAPI, UploadFile
from fastapi.exceptions import HTTPException
from starlette.responses import RedirectResponse


_LOGGER = logging.getLogger(__name__)


class CheckReady(BaseModel):
status: str = "OK"


class ModelMetaData(BaseModel):
model_path: str


def start_server(
config_path: str,
host: str = "0.0.0.0",
Expand Down Expand Up @@ -142,12 +152,14 @@ def _home():
def _info():
return server_config

@app.get("/ping", tags=["general"], response_model=bool)
@app.get("/health", tags=["general"], response_model=bool)
@app.get("/healthcheck", tags=["general"], response_model=bool)
@app.get("/status", tags=["general"], response_model=bool)
dsikka marked this conversation as resolved.
Show resolved Hide resolved
def _health():
return True
@app.get("/v2/health/ready", tags=["health"], response_model=CheckReady)
@app.get("/v2/health/live", tags=["health"], response_model=CheckReady)
def _check_health():
return CheckReady(status="OK")

@app.get("/v2", tags=["metadata", "server"], response_model=str)
def _get_server_info():
return "This is the deepsparse server. Hello!"

@app.post("/endpoints", tags=["endpoints"], response_model=bool)
def _add_endpoint_endpoint(cfg: EndpointConfig):
Expand Down Expand Up @@ -237,16 +249,76 @@ def _add_endpoint(
pipeline = Pipeline.from_config(pipeline_config, context, server_logger)

_LOGGER.info(f"Adding endpoints for '{endpoint_config.name}'")
_add_pipeline_endpoint(
_add_inference_endpoints(
app,
endpoint_config,
server_config.system_logging,
pipeline,
server_config.integration,
)
_add_status_and_metadata_endpoints(
app, endpoint_config, pipeline, server_config.integration
)


def _add_endpoint_to_app(app, routes_and_fns, response_model, methods, tags):
for route, endpoint_fn in routes_and_fns:
app.add_api_route(
route,
endpoint_fn,
response_model=response_model,
methods=methods,
tags=tags,
)
_LOGGER.info(f"Added '{route}' endpoint")


def clean_up_route(route):
if not route.startswith("/"):
route = "/" + route
return route


def _add_status_and_metadata_endpoints(
app: FastAPI,
endpoint_config: EndpointConfig,
pipeline: Pipeline,
integration: str = INTEGRATION_LOCAL,
):
def _pipeline_ready():
return CheckReady(status="OK")

def _model_metadata():
if not pipeline or not pipeline.model_path:
HTTPException(status_code=404, detail="Model path not found")
return ModelMetaData(model_path=pipeline.model_path)

routes_and_fns = []
meta_and_fns = []

if integration == INTEGRATION_LOCAL:
if endpoint_config.route:
endpoint_config.route = clean_up_route(endpoint_config.route)
route_ready = f"{endpoint_config.route}/ready"
route_meta = endpoint_config.route
else:
route_ready = f"/v2/models/{endpoint_config.name}/ready"
route_meta = f"/v2/models/{endpoint_config.name}"

elif integration == INTEGRATION_SAGEMAKER:
route_ready = "/invocations/ready"
route_meta = "/invocations"
dsikka marked this conversation as resolved.
Show resolved Hide resolved

routes_and_fns.append((route_ready, _pipeline_ready))
meta_and_fns.append((route_meta, _model_metadata))

_add_endpoint_to_app(
app, meta_and_fns, ModelMetaData, ["GET"], ["model", "metadata"]
)
_add_endpoint_to_app(app, routes_and_fns, CheckReady, ["GET"], ["model", "health"])


def _add_pipeline_endpoint(
def _add_inference_endpoints(
app: FastAPI,
endpoint_config: EndpointConfig,
system_logging_config: SystemLoggingConfig,
Expand Down Expand Up @@ -275,26 +347,24 @@ def _predict_from_files(request: List[UploadFile]):

routes_and_fns = []
if integration == INTEGRATION_LOCAL:
route = endpoint_config.route or "/predict"
if not route.startswith("/"):
route = "/" + route
route = (
f"{endpoint_config.route}/infer"
if endpoint_config.route
else f"/v2/models/{endpoint_config.name}/infer"
)
route = clean_up_route(route)

routes_and_fns.append((route, _predict))
if hasattr(input_schema, "from_files"):
routes_and_fns.append((route + "/from_files", _predict_from_files))

elif integration == INTEGRATION_SAGEMAKER:
route = "/invocations"
route = "/invocations/infer"
dsikka marked this conversation as resolved.
Show resolved Hide resolved
if hasattr(input_schema, "from_files"):
routes_and_fns.append((route, _predict_from_files))
else:
routes_and_fns.append((route, _predict))

for route, endpoint_fn in routes_and_fns:
app.add_api_route(
route,
endpoint_fn,
response_model=output_schema,
methods=["POST"],
tags=["predict"],
)
_LOGGER.info(f"Added '{route}' endpoint")
_add_endpoint_to_app(
app, routes_and_fns, output_schema, ["POST"], ["model", "inference"]
)
56 changes: 34 additions & 22 deletions tests/server/test_endpoints.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import pytest
from deepsparse.loggers import MultiLogger
from deepsparse.server.config import EndpointConfig, ServerConfig, SystemLoggingConfig
from deepsparse.server.server import _add_pipeline_endpoint, _build_app
from deepsparse.server.server import _add_inference_endpoints, _build_app
from fastapi import FastAPI, UploadFile
from fastapi.testclient import TestClient
from tests.utils import mock_engine
Expand Down Expand Up @@ -57,11 +57,11 @@ def test_config(self, server_config, client):
loaded = ServerConfig(**response.json())
assert loaded == server_config

@pytest.mark.parametrize("route", ["/ping", "/health", "/healthcheck", "/status"])
@pytest.mark.parametrize("route", ["/v2/health/ready", "/v2/health/live"])
def test_pings_exist(self, client, route):
response = client.get(route)
assert response.status_code == 200
assert response.json() is True
assert response.json()["status"] == "OK"

def test_docs_exist(self, client):
assert client.get("/docs").status_code == 200
Expand Down Expand Up @@ -97,69 +97,75 @@ def test_add_model_endpoint(self, app: FastAPI, client: TestClient):
output_schema=int,
logger=MultiLogger([]),
)
_add_pipeline_endpoint(
_add_inference_endpoints(
app,
system_logging_config=SystemLoggingConfig(),
endpoint_config=Mock(route="/predict/parse_int"),
pipeline=mock_pipeline,
)
assert app.routes[-1].path == "/predict/parse_int"
assert app.routes[-1].path == "/predict/parse_int/infer"
assert app.routes[-1].response_model is int
assert app.routes[-1].endpoint.__annotations__ == {"request": StrSchema}
assert app.routes[-1].methods == {"POST"}

for v in ["1234", "5678"]:
response = client.post("/predict/parse_int", json=dict(value=v))
response = client.post("/predict/parse_int/infer", json=dict(value=v))
assert response.status_code == 200
assert response.json() == int(v)

def test_add_model_endpoint_with_from_files(self, app):
_add_pipeline_endpoint(
_add_inference_endpoints(
app,
system_logging_config=Mock(),
endpoint_config=Mock(route="/predict/parse_int"),
pipeline=Mock(input_schema=FromFilesSchema, output_schema=int),
)
assert app.routes[-2].path == "/predict/parse_int"
assert app.routes[-2].path == "/predict/parse_int/infer"
assert app.routes[-2].endpoint.__annotations__ == {"request": FromFilesSchema}
assert app.routes[-1].path == "/predict/parse_int/from_files"
assert app.routes[-1].path == "/predict/parse_int/infer/from_files"
assert app.routes[-1].endpoint.__annotations__ == {"request": List[UploadFile]}
assert app.routes[-1].response_model is int
assert app.routes[-1].methods == {"POST"}

def test_sagemaker_only_adds_one_endpoint(self, app):
num_routes = len(app.routes)
_add_pipeline_endpoint(
_add_inference_endpoints(
app,
endpoint_config=Mock(route="/predict/parse_int"),
system_logging_config=Mock(),
pipeline=Mock(input_schema=FromFilesSchema, output_schema=int),
integration="sagemaker",
)
assert len(app.routes) == num_routes + 1
assert app.routes[-1].path == "/invocations"
assert app.routes[-1].path == "/invocations/infer"
assert app.routes[-1].endpoint.__annotations__ == {"request": List[UploadFile]}

num_routes = len(app.routes)
_add_pipeline_endpoint(
_add_inference_endpoints(
app,
endpoint_config=Mock(route="/predict/parse_int"),
system_logging_config=Mock(),
pipeline=Mock(input_schema=StrSchema, output_schema=int),
integration="sagemaker",
)
assert len(app.routes) == num_routes + 1
assert app.routes[-1].path == "/invocations"
assert app.routes[-1].path == "/invocations/infer"
assert app.routes[-1].endpoint.__annotations__ == {"request": StrSchema}

def test_add_endpoint_with_no_route_specified(self, app):
_add_pipeline_endpoint(
_add_inference_endpoints(
app,
endpoint_config=Mock(route=None),
endpoint_config=EndpointConfig(
route=None,
name="test_name",
task="text-classification",
model="default",
),
system_logging_config=Mock(),
pipeline=Mock(input_schema=StrSchema, output_schema=int),
)
assert app.routes[-1].path == "/predict"

assert app.routes[-1].path == "/v2/models/test_name/infer"


class TestActualModelEndpoints:
Expand Down Expand Up @@ -191,11 +197,11 @@ def client(self):

def test_static_batch_errors_on_wrong_batch_size(self, client):
# this is okay because we can pad batches now
client.post("/predict/static-batch", json={"sequences": "today is great"})
client.post("/predict/static-batch/infer", json={"sequences": "today is great"})

def test_static_batch_good_request(self, client):
response = client.post(
"/predict/static-batch",
"/predict/static-batch/infer",
json={"sequences": ["today is great", "today is terrible"]},
)
assert response.status_code == 200
Expand All @@ -212,7 +218,7 @@ def test_static_batch_good_request(self, client):
],
)
def test_dynamic_batch_any(self, client, seqs):
response = client.post("/predict/dynamic-batch", json={"sequences": seqs})
response = client.post("/predict/dynamic-batch/infer", json={"sequences": seqs})
assert response.status_code == 200
output = response.json()
assert len(output["labels"]) == len(seqs)
Expand Down Expand Up @@ -242,17 +248,23 @@ def test_dynamic_add_and_remove_endpoint(engine_mock):
# add /predict
response = client.post(
"/endpoints",
json=EndpointConfig(task="text-classification", model="default").dict(),
json=EndpointConfig(
task="text-classification", model="default", name="test_model"
).dict(),
)

assert response.status_code == 200
response = client.post("/predict", json=dict(sequences="asdf"))

response = client.post("/v2/models/test_model/infer", json=dict(sequences="asdf"))
assert response.status_code == 200

# remove /predict
response = client.delete(
"/endpoints",
json=EndpointConfig(
route="/predict", task="text-classification", model="default"
route="/v2/models/test_model/infer",
task="text-classification",
model="default",
).dict(),
)
assert response.status_code == 200
Expand Down
Loading