Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove scipy by implementing log_softmax #1561

Merged
merged 3 commits into from
Jan 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,8 +165,7 @@ def _parse_requirements_file(file_path):
_haystack_integration_deps = _parse_requirements_file(_haystack_requirements_file_path)
_clip_deps = [
"open_clip_torch==2.20.0",
"scipy<1.10,>=1.8",
"transformers<4.35",
"transformers<4.37",
]


Expand Down
4 changes: 2 additions & 2 deletions src/deepsparse/clip/zeroshot_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@

from deepsparse.clip import CLIPTextInput, CLIPVisualInput
from deepsparse.legacy.pipeline import BasePipeline, Pipeline
from scipy.special import softmax
from deepsparse.utils import numpy_softmax


__all__ = ["CLIPZeroShotInput", "CLIPZeroShotOutput", "CLIPZeroShotPipeline"]
Expand Down Expand Up @@ -103,7 +103,7 @@ def __call__(self, *args, **kwargs):
text_output /= lingalg.norm(text_output, axis=-1, keepdims=True)

output_product = 100.0 * visual_output @ text_output.T
text_probs = softmax(output_product, axis=-1)
text_probs = numpy_softmax(output_product, axis=-1)

return self.output_schema(text_scores=np.vsplit(text_probs, len(text_probs)))

Expand Down
5 changes: 2 additions & 3 deletions src/deepsparse/server/openai_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,10 +46,9 @@
)
from deepsparse.server.server import Server
from deepsparse.tasks import SupportedTasks
from deepsparse.utils import InferenceState
from deepsparse.utils import InferenceState, numpy_softmax
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import StreamingResponse
from scipy.special import softmax


_LOGGER = logging.getLogger(__name__)
Expand Down Expand Up @@ -481,7 +480,7 @@ def create_logprobs(
tokens = pipeline.tokenizer.batch_decode(token_ids)

for i in range(len(tokens)):
log_prob = float(numpy.log(max(softmax(scores[i]))))
log_prob = float(numpy.log(max(numpy_softmax(scores[i]))))
logprobs.tokens.append(tokens[i])
logprobs.token_logprobs.append(log_prob)

Expand Down
4 changes: 2 additions & 2 deletions src/deepsparse/transformers/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@

import numpy

from scipy.special import log_softmax
from deepsparse.utils import numpy_log_softmax


__all__ = [
Expand Down Expand Up @@ -266,7 +266,7 @@ def _cross_entropy(
float: The computed cross-entropy loss.
"""

logp = log_softmax(predictions, axis=-1)
logp = numpy_log_softmax(predictions, axis=-1)
neg_log_likelihoods = -1.0 * numpy.take_along_axis(
logp, numpy.expand_dims(targets, axis=-1), axis=-1
)
Expand Down
30 changes: 30 additions & 0 deletions src/deepsparse/utils/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,36 @@ def numpy_softmax(x: numpy.ndarray, axis: int = 0):
return softmax_x


def numpy_log_softmax(x: numpy.ndarray, axis: int = 0):
"""
Ref: https://github.com/scipy/scipy/blob/v1.12.0/scipy/special/_logsumexp.py

In principle: log_softmax(x) = log(softmax(x))
but using a more accurate implementation.

:param x: array containing values to be softmaxed
:param axis: axis across which to perform softmax
:return: x with values across axis softmaxed
"""
x_max = numpy.max(x, axis=axis, keepdims=True)

if x_max.ndim > 0:
x_max[~numpy.isfinite(x_max)] = 0
elif not numpy.isfinite(x_max):
x_max = 0

tmp = x - x_max
exp_tmp = numpy.exp(tmp)

# suppress warnings about log of zero
with numpy.errstate(divide="ignore"):
s = numpy.sum(exp_tmp, axis=axis, keepdims=True)
out = numpy.log(s)

out = tmp - out
return out


def split_engine_inputs(
items: List[numpy.ndarray], batch_size: int
) -> Tuple[List[List[numpy.ndarray]], int]:
Expand Down
4 changes: 2 additions & 2 deletions tests/server/test_openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@
ModelPermission,
OpenAIServer,
)
from deepsparse.utils import numpy_softmax
from fastapi.testclient import TestClient
from scipy.special import softmax


TEST_MODEL_ID = "hf:mgoin/TinyStories-1M-ds"
Expand Down Expand Up @@ -246,7 +246,7 @@ def test_logprobs(client, model_card):

for local_gen, server_gen in zip(output.generations, response.json()["choices"]):
local_top1_logprobs = [
numpy.log(max(softmax(logits))) for logits in local_gen.score
numpy.log(max(numpy_softmax(logits))) for logits in local_gen.score
]
server_top1_logprobs = server_gen["logprobs"]["token_logprobs"]
assert numpy.allclose(local_top1_logprobs, server_top1_logprobs)
Loading