Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

cunumeric.random - sort and shuffle-based operations #559

Open
wants to merge 8 commits into
base: branch-24.03
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions cunumeric/eager.py
Original file line number Diff line number Diff line change
Expand Up @@ -711,9 +711,9 @@ def bitgenerator_integers(
)
else:
if self.array.size == 1:
self.array.fill(np.random.random_integers(low, high))
self.array.fill(np.random.randint(low, high))
else:
a = np.random.random_integers(low, high, size=self.array.shape)
a = np.random.randint(low, high, size=self.array.shape)
self.array[:] = a

def bitgenerator_lognormal(
Expand Down
145 changes: 145 additions & 0 deletions cunumeric/random/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from cunumeric.array import ndarray
from cunumeric.runtime import runtime

import cunumeric.sort
from cunumeric.random import generator

if TYPE_CHECKING:
Expand Down Expand Up @@ -216,6 +217,96 @@ def chisquare(
return generator.get_static_generator().chisquare(df, size, dtype)


def choice(
a: Union[int, ndarray],
size: Union[NdShapeLike, None] = None,
replace: bool = True,
p: Union[None, ndarray] = None,
) -> Union[int, ndarray, npt.NDArray[Any]]:
"""
Returns an array of random values from a given 1-D array.
Each element of the returned array is independently sampled
from ``a`` according to ``p`` or uniformly.

Note
----
Currently ``p`` is not supported when ``replace=False``.

Parameters
----------
a : ndarray or int : If an array-like,
a random sample is generated from its elements.
If an int, the random sample is generated as if ``a`` was
``np.arange(n)``
size : int or tuple of ints : The shape of the array.
replace (boolean): Whether the sample is with or without replacement.
p : 1-D array-like :
The probabilities associated with each entry in ``a``.
If not given the sample assumes a uniform distribution over all
entries in ``a``.
Comment on lines +243 to +246
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

optional params need "optional" and also to state the default values. c.f. numpy docstring:

https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html


Returns
-------
out : ndarray : The generated random samples.


Raises
------
ValueError
If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size

See Also
--------
numpy.random.choice

Availability
--------
Multiple GPUs, Multiple CPUs
"""

if isinstance(a, int) and a <= 0:
raise ValueError
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Numpy includes a specific message for the exception

Input In [3], in <cell line: 1>()
----> 1 np.random.choice(a, -1)

File mtrand.pyx:962, in numpy.random.mtrand.RandomState.choice()

File mtrand.pyx:748, in numpy.random.mtrand.RandomState.randint()

File _bounded_integers.pyx:1256, in numpy.random._bounded_integers._rand_int64()

ValueError: negative dimensions are not allowed

if not isinstance(size, int):
raise ValueError
Copy link
Contributor

@bryevdv bryevdv Aug 30, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Numpy lets a TypeError go through in this situation

In [4]: np.random.choice(a, 2, p=3.4)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Input In [4], in <cell line: 1>()
----> 1 np.random.choice(a, 2, p=3.4)

File mtrand.pyx:918, in numpy.random.mtrand.RandomState.choice()

TypeError: object of type 'float' has no len()

we could explicitly raise our own TypeError here if it doesn't arise naturally in our codepaths, but we should match exception type with Numpy in any case.

if p is None:
if isinstance(a, int):
if replace:
return cunumeric.random.randint(0, a, size)
else:
if a < size:
raise ValueError
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Numpy has a descriptive error message

In [9]: np.random.choice(5, size=8, replace=False)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Input In [9], in <cell line: 1>()
----> 1 np.random.choice(5, size=8, replace=False)

File mtrand.pyx:965, in numpy.random.mtrand.RandomState.choice()

ValueError: Cannot take a larger sample than population when 'replace=False'

return cunumeric.random.permutation(a)[:size]
else:
if replace:
indices = cunumeric.random.randint(0, len(a), size)
return a[indices]
else:
if len(a) < size:
raise ValueError
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same as above:

ValueError: Cannot take a larger sample than population when 'replace=False'

return cunumeric.random.permutation(a)[:size]
else:
if not replace:
raise ValueError
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
raise ValueError
raise ValueError("cunumeric.random.choice does not currently support passing 'p' when 'replace=False'")

cump = p.cumsum()
# check if p is a probability distribution
if abs(cump[-1] - 1.0) > len(p) * np.finfo(p.dtype).eps:
# does not sum up to 1
raise ValueError
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

From Numpy:

ValueError: probabilities do not sum to 1

cump[-1] = 1.0 # fix rounding issues
# draw uniforms
uni = cunumeric.random.uniform(0.0, 1.0, size)
# inverse distribution
idx = cunumeric.searchsorted(cump, uni, "right")
# return samples
if isinstance(a, int):
return cunumeric.arange(a)[idx]
return a[idx]


def exponential(
scale: float = 1.0,
size: Union[NdShapeLike, None] = None,
Expand Down Expand Up @@ -924,6 +1015,40 @@ def pareto(
return generator.get_static_generator().pareto(a, size, dtype)


def permutation(x: Union[int, ndarray]) -> ndarray:
"""
Returns a permuted range or a permutation of an array.

Parameters
----------
a : (int or ndarray): The range or the array to be shuffled.

Returns
-------
out: If `a` is an integer, it is permutation range between 0
and `a` - 1.
Otherwise, it is a permutation of `a`.

See Also
--------
numpy.random.permutation

Availability
--------
Multiple GPUs, Multiple CPUs
"""
if isinstance(x, int):
count = x
else:
count = len(x)
key = uniform(0.0, 1.0, count)
indices = cunumeric.argsort(key)
if isinstance(x, int):
return indices
else:
return x[indices]
bryevdv marked this conversation as resolved.
Show resolved Hide resolved


def poisson(
lam: float = 1.0, size: Union[NdShapeLike, None] = None
) -> ndarray:
Expand Down Expand Up @@ -1277,6 +1402,26 @@ def rayleigh(
sample = random_sample


def shuffle(a: ndarray) -> None:
"""
Shuffles an array.

Parameters
----------
a : (ndarray): The array to be shuffled.

See Also
--------
numpy.random.shuffle

Availability
--------
Multiple GPUs, Multiple CPUs
"""
b = cunumeric.random.permutation(a)
a[:] = b


def standard_cauchy(
size: Union[NdShapeLike, None] = None,
dtype: npt.DTypeLike = np.float64,
Expand Down
116 changes: 116 additions & 0 deletions tests/integration/test_random_permsort.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright 2022 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import pytest

import cunumeric as num


def test_permutation_int():
count = 1024
p = num.random.permutation(count)
p.sort()
assert num.linalg.norm(p - np.arange(count)) == 0.0


def test_permutation_array():
count = 1024
x = num.arange(count)
p = num.random.permutation(x)
assert num.linalg.norm(x - p) != 0.0
p.sort()
assert num.linalg.norm(x - p) == 0.0


def test_shuffle():
count = 16
p = num.arange(count)
x = num.arange(count)
num.random.shuffle(x)
assert num.linalg.norm(x - p) != 0.0
x.sort()
assert num.linalg.norm(x - p) == 0.0


def test_choice_1(maxvalue=1024, count=42):
a = num.random.choice(maxvalue, count)
assert len(a) == count
assert num.amax(a) <= maxvalue
assert num.amin(a) >= 0


def test_choice_2(maxvalue=1024, count=42):
bryevdv marked this conversation as resolved.
Show resolved Hide resolved
a = num.random.choice(maxvalue, count, False)
assert len(a) == count
assert num.amax(a) <= maxvalue
assert num.amin(a) >= 0
for i in range(count):
for j in range(count):
if i == j:
continue
assert a[i] != a[j]


def test_choice_3(maxvalue=1024, count=42):
values = num.random.random_integers(0, maxvalue, maxvalue)

a = num.random.choice(values, count)
assert len(a) == count
assert num.amax(a) <= num.amax(values)
assert num.amin(a) >= num.amin(values)


def test_choice_4(maxvalue=1024, count=42):
values = num.arange(maxvalue)

a = num.random.choice(values, count, False)
assert len(a) == count
assert num.amax(a) <= num.amax(values)
assert num.amin(a) >= num.amin(values)
for i in range(count):
for j in range(count):
if i == j:
continue
assert a[i] != a[j]


def test_choice_5(maxvalue=1024, count=42):
values = num.arange(maxvalue)

p = num.random.uniform(0, 1, maxvalue)
p /= p.sum()

a = num.random.choice(values, count, True, p)
assert len(a) == count
assert num.amax(a) <= num.amax(values)
assert num.amin(a) >= num.amin(values)


def test_choice_6(maxvalue=1024, count=42):
values = num.random.random_integers(0, maxvalue, maxvalue)

p = num.random.uniform(0, 1, maxvalue)
p /= p.sum()

a = num.random.choice(values, count, True, p)
assert len(a) == count
assert num.amax(a) <= num.amax(values)
assert num.amin(a) >= num.amin(values)


if __name__ == "__main__":
import sys

sys.exit(pytest.main(sys.argv))