Skip to content

Commit

Permalink
Merge pull request #185 from ThibFrgsGmz/feat/lambert_improv
Browse files Browse the repository at this point in the history
(feat) breakdown Lambert::stardard() function
  • Loading branch information
ChristopherRabotin authored Jun 15, 2023
2 parents 03a5f5d + 3443b22 commit 63b78f1
Showing 1 changed file with 63 additions and 40 deletions.
103 changes: 63 additions & 40 deletions src/tools/lambert.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,9 @@ const TAU: f64 = 2.0 * PI;
const LAMBERT_EPSILON: f64 = 1e-4; // General epsilon
const LAMBERT_EPSILON_TIME: f64 = 1e-4; // Time epsilon
const LAMBERT_EPSILON_RAD: f64 = (5e-5 / 180.0) * PI; // 0.00005 degrees
/// Maximum number of iterations allowed in the Lambert problem solver.
/// This is a safety measure to prevent infinite loops in case a solution cannot be found.
const MAX_ITERATIONS: usize = 1000;

/// Define the transfer kind for a Lambert
pub enum TransferKind {
Expand All @@ -33,17 +36,68 @@ pub enum TransferKind {
NRevs(u8),
}

impl TransferKind {
/// Calculate the direction multiplier based on the transfer kind.
///
/// # Arguments
///
/// * `r_final` - The final radius vector.
/// * `r_init` - The initial radius vector.
///
/// # Returns
///
/// * `Result<f64, NyxError>` - The direction multiplier or an error if the transfer kind is not supported.
fn direction_of_motion(
self,
r_final: &Vector3<f64>,
r_init: &Vector3<f64>,
) -> Result<f64, NyxError> {
match self {
TransferKind::Auto => {
let mut dnu = r_final[1].atan2(r_final[0]) - r_init[1].atan2(r_final[1]);
if dnu > TAU {
dnu -= TAU;
} else if dnu < 0.0 {
dnu += TAU;
}

if dnu > std::f64::consts::PI {
Ok(-1.0)
} else {
Ok(1.0)
}
}
TransferKind::ShortWay => Ok(1.0),
TransferKind::LongWay => Ok(-1.0),
_ => Err(NyxError::LambertMultiRevNotSupported),
}
}
}

#[derive(Debug)]
pub struct LambertSolution {
pub v_init: Vector3<f64>,
pub v_final: Vector3<f64>,
pub phi: f64,
}

/// Solves the Lambert boundary problem using a standard secant method.
/// Solve the Lambert boundary problem using a standard secant method.
///
/// Given the initial and final radii, a time of flight, and a gravitational parameters, it returns the needed initial and final velocities
/// along with φ which is the square of the difference in eccentric anomaly. Note that the direction of motion
/// is computed directly in this function to simplify the generation of Pork chop plots.
///
/// # Arguments
///
/// * `r_init` - The initial radius vector.
/// * `r_final` - The final radius vector.
/// * `tof` - The time of flight.
/// * `gm` - The gravitational parameter.
/// * `kind` - The kind of transfer (auto, short way, long way, or number of revolutions).
///
/// # Returns
///
/// `Result<LambertSolution, NyxError>` - The solution to the Lambert problem or an error if the problem could not be solved.
pub fn standard(
r_init: Vector3<f64>,
r_final: Vector3<f64>,
Expand All @@ -53,91 +107,64 @@ pub fn standard(
) -> Result<LambertSolution, NyxError> {
let r_init_norm = r_init.norm();
let r_final_norm = r_final.norm();
let r_norm_product = r_init_norm * r_final_norm;
let cos_dnu = r_init.dot(&r_final) / r_norm_product;

let cos_dnu = r_init.dot(&r_final) / (r_init_norm * r_final_norm);
let dm = kind.direction_of_motion(&r_final, &r_init)?;

let dm = match kind {
TransferKind::Auto => {
let mut dnu = r_final[1].atan2(r_final[0]) - r_init[1].atan2(r_final[1]);
if dnu > TAU {
dnu -= TAU;
} else if dnu < 0.0 {
dnu += TAU;
}

if dnu > std::f64::consts::PI {
-1.0
} else {
1.0
}
}
TransferKind::ShortWay => 1.0,
TransferKind::LongWay => -1.0,
_ => return Err(NyxError::LambertMultiRevNotSupported),
};

// Compute the direction of motion
let nu_init = r_init[1].atan2(r_init[0]);
let nu_final = r_final[1].atan2(r_final[0]);

let a = dm * (r_init_norm * r_final_norm * (1.0 + cos_dnu)).sqrt();
let a = dm * (r_norm_product * (1.0 + cos_dnu)).sqrt();

if nu_final - nu_init < LAMBERT_EPSILON_RAD && a.abs() < LAMBERT_EPSILON {
return Err(NyxError::TargetsTooClose);
}

// Define the search space (note that we do not support multirevs in this algorithm)
let mut phi_upper = 4.0 * PI.powi(2);
let mut phi_lower = -4.0 * PI.powi(2);
let mut phi = 0.0; // ??!?
let mut phi = 0.0;

// Initial guesses for c2 and c3
let mut c2: f64 = 1.0 / 2.0;
let mut c3: f64 = 1.0 / 6.0;
let mut iter: usize = 0;
let mut cur_tof: f64 = 0.0;
let mut y = 0.0;

while (cur_tof - tof).abs() > LAMBERT_EPSILON_TIME {
if iter > 1000 {
if iter > MAX_ITERATIONS {
return Err(NyxError::MaxIterReached(format!(
"Lambert solver failed after {} iterations",
1000
MAX_ITERATIONS
)));
}
iter += 1;

y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
if a > 0.0 && y < 0.0 {
// Try to increase phi
for _ in 0..500 {
phi += 0.1;
// Recompute y
y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
if y >= 0.0 {
break;
}
}
if y < 0.0 {
// If y is still negative, then our attempts have failed.
return Err(NyxError::LambertNotReasonablePhi);
}
}

let chi = (y / c2).sqrt();
// Compute the current time of flight
cur_tof = (chi.powi(3) * c3 + a * y.sqrt()) / gm.sqrt();
// Update the next TOF we should use

if cur_tof < tof {
phi_lower = phi;
} else {
phi_upper = phi;
}

// Compute the next phi
phi = (phi_upper + phi_lower) / 2.0;

// Update c2 and c3
if phi > LAMBERT_EPSILON {
let sqrt_phi = phi.sqrt();
let (s_sphi, c_sphi) = sqrt_phi.sin_cos();
Expand All @@ -148,19 +175,15 @@ pub fn standard(
c2 = (1.0 - sqrt_phi.cosh()) / phi;
c3 = (sqrt_phi.sinh() - sqrt_phi) / (-phi).powi(3).sqrt();
} else {
// Reset c2 and c3 and try again
c2 = 0.5;
c3 = 1.0 / 6.0;
}
}

// Time of flight matches!

let f = 1.0 - y / r_init_norm;
let g_dot = 1.0 - y / r_final_norm;
let g = a * (y / gm).sqrt();

// Compute velocities
Ok(LambertSolution {
v_init: (r_final - f * r_init) / g,
v_final: (1.0 / g) * (g_dot * r_final - r_init),
Expand Down

0 comments on commit 63b78f1

Please sign in to comment.