Routines for plotting area-weighted two- and three-circle venn diagrams.
Install the package as usual via pip
:
$ python -m pip install matplotlib-venn
numpy
,scipy
,matplotlib
.
The package provides four main functions: venn2
,
venn2_circles
, venn3
and venn3_circles
.
The functions venn2
and venn2_circles
accept as their only
required argument a 3-element tuple (Ab, aB, AB)
of subset sizes,
and draw a two-circle venn diagram with respective region areas, e.g.:
venn2(subsets = (3, 2, 1))
In this example, the region, corresponding to subset A and not B
will
be three times larger in area than the region, corresponding to subset A and B
.
You can also provide a tuple of two set
or Counter
(i.e. multi-set)
objects instead (new in version 0.7), e.g.:
venn2((set(['A', 'B', 'C', 'D']), set(['D', 'E', 'F'])))
Similarly, the functions venn3
and venn3_circles
take a
7-element tuple of subset sizes (Abc, aBc, ABc, abC, AbC, aBC,
ABC)
, and draw a three-circle area-weighted venn
diagram. Alternatively, a tuple of three set
or Counter
objects may be provided.
The functions venn2
and venn3
draw the diagrams as a collection of colored
patches, annotated with text labels. The functions venn2_circles
and
venn3_circles
draw just the circles.
Sometimes the area weighing needs to be disabled or manually tuned to achieve a visually better result. This can be achieved as follows:
from matplotlib_venn.layout.venn2 import DefaultLayoutAlgorithm venn2((1,2,3), layout_algorithm=DefaultLayoutAlgorithm(fixed_subset_sizes=(1,1,1))) from matplotlib_venn.layout.venn3 import DefaultLayoutAlgorithm venn3((7,6,5,4,3,2,1), layout_algorithm=DefaultLayoutAlgorithm(fixed_subset_sizes=(1,1,1,1,1,1,1)))
Note that for a three-circle venn diagram it is not in general possible to achieve exact correspondence between the required set sizes and region areas, however in most cases the picture will still provide a useful representation.
The functions venn2_circles
and venn3_circles
return the list of matplotlib.patch.Circle
objects that may be tuned further
to your liking. The functions venn2
and venn3
return an object of class VennDiagram
,
which gives access to constituent patches, text elements, and (since
version 0.7) the information about the centers and radii of the
circles.
Basic Example:
from matplotlib_venn import venn2 venn2(subsets = (3, 2, 1))
For the three-circle case:
from matplotlib_venn import venn3 venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))
A more elaborate example:
from matplotlib import pyplot as plt import numpy as np from matplotlib_venn import venn3, venn3_circles plt.figure(figsize=(4,4)) v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C')) v.get_patch_by_id('100').set_alpha(1.0) v.get_patch_by_id('100').set_color('white') v.get_label_by_id('100').set_text('Unknown') v.get_label_by_id('A').set_text('Set "A"') c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed') c[0].set_lw(1.0) c[0].set_ls('dotted') plt.title("Sample Venn diagram") plt.annotate('Unknown set', xy=v.get_label_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70), ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray')) plt.show()
An example with multiple subplots:
from matplotlib_venn import venn2, venn2_circles figure, axes = plt.subplots(2, 2) venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B'), ax=axes[0][0]) venn2_circles((1, 2, 3), ax=axes[0][1]) venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'), ax=axes[1][0]) venn3_circles({'001': 10, '100': 20, '010': 21, '110': 13, '011': 14}, ax=axes[1][1]) plt.show()
Perhaps the most common use case is generating a Venn diagram given three sets of objects:
set1 = set(['A', 'B', 'C', 'D']) set2 = set(['B', 'C', 'D', 'E']) set3 = set(['C', 'D',' E', 'F', 'G']) venn3([set1, set2, set3], ('Set1', 'Set2', 'Set3')) plt.show()
- If you ask your questions at StackOverflow and tag them matplotlib-venn, chances are high you could get an answer from the maintainer of this package.
Report issues and submit fixes at Github: https://github.com/konstantint/matplotlib-venn
Check out the
DEVELOPER-README.rst
for development-related notes.Some alternative means of plotting a Venn diagram (as of October 2012) are reviewed in the blog post: http://fouryears.eu/2012/10/13/venn-diagrams-in-python/
The matplotlib-subsets package visualizes a hierarchy of sets as a tree of rectangles.
The matplotlib_venn_wordcloud package combines Venn diagrams with word clouds for a pretty amazing (and amusing) result.