Skip to content

Commit

Permalink
add prebuild package usage docs on windows (#816)
Browse files Browse the repository at this point in the history
* add prebuild package usage docs on windows

* fix lint

* update

* try fix lint

* add en docs

* update

* update

* udpate faq
  • Loading branch information
irexyc authored Aug 3, 2022
1 parent 3ecee6f commit 091bfc3
Show file tree
Hide file tree
Showing 4 changed files with 852 additions and 0 deletions.
384 changes: 384 additions & 0 deletions docs/en/02-how-to-run/prebuilt_package_windows.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,384 @@
# How to use prebuilt package on Windows10

- [How to use prebuilt package on Windows10](#how-to-use-prebuilt-package-on-windows10)
- [Prerequisite](#prerequisite)
- [ONNX Runtime](#onnx-runtime)
- [TensorRT](#tensorrt)
- [Model Convert](#model-convert)
- [ONNX Runtime Example](#onnx-runtime-example)
- [TensorRT Example](#tensorrt-example)
- [Model Inference](#model-inference)
- [Backend Inference](#backend-inference)
- [ONNXRuntime](#onnxruntime)
- [TensorRT](#tensorrt-1)
- [Python SDK](#python-sdk)
- [ONNXRuntime](#onnxruntime-1)
- [TensorRT](#tensorrt-2)
- [C SDK](#c-sdk)
- [ONNXRuntime](#onnxruntime-2)
- [TensorRT](#tensorrt-3)
- [Troubleshooting](#troubleshooting)

______________________________________________________________________

This tutorial takes `mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1.zip` and `mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip` as examples to show how to use the prebuilt packages.

The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.

```
.
|-- dist
`-- sdk
|-- bin
|-- example
|-- include
|-- lib
`-- python
```

## Prerequisite

In order to use the prebuilt package, you need to install some third-party dependent libraries.

1. Follow the [get_started](../get_started.md) documentation to create a virtual python environment and install pytorch, torchvision and mmcv-full. To use the C interface of the SDK, you need to install [vs2019+](https://visualstudio.microsoft.com/), [OpenCV](https://github.com/opencv/opencv/releases).

:point_right: It is recommended to use `pip` instead of `conda` to install pytorch and torchvision

2. Clone the mmdeploy repository

```bash
git clone https://github.com/open-mmlab/mmdeploy.git
```

:point_right: The main purpose here is to use the configs, so there is no need to compile `mmdeploy`.

3. Install mmclassification

```bash
git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification
pip install -e .
```

4. Prepare a PyTorch model as our example

Download the pth [resnet18_8xb32_in1k_20210831-fbbb1da6.pth](https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth). The corresponding config of the model is [resnet18_8xb32_in1k.py](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb32_in1k.py)

After the above work is done, the structure of the current working directory should be:

```
.
|-- mmclassification
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
```

### ONNX Runtime

In order to use `ONNX Runtime` backend, you should also do the following steps.

5. Install `mmdeploy` (Model Converter) and `mmdeploy_python` (SDK Python API).

```bash
# download mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1.zip
pip install .\mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-0.6.0-py38-none-win_amd64.whl
pip install .\mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-0.6.0-cp38-none-win_amd64.whl
```

:point_right: If you have installed it before, please uninstall it first.

6. Install onnxruntime package

```
pip install onnxruntime==1.8.1
```

7. Download [`onnxruntime`](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), and add environment variable.

As shown in the figure, add the lib directory of onnxruntime to the `PATH`.

![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.

### TensorRT

In order to use `TensorRT` backend, you should also do the following steps.

5. Install `mmdeploy` (Model Converter) and `mmdeploy_python` (SDK Python API).

```bash
# download mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
pip install .\mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-0.6.0-py38-none-win_amd64.whl
pip install .\mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-0.6.0-cp38-none-win_amd64.whl
```

:point_right: If you have installed it before, please uninstall it first.

6. Install TensorRT related package and set environment variables

- CUDA Toolkit 11.1
- TensorRT 8.2.3.0
- cuDNN 8.2.1.0

Add the runtime libraries of TensorRT and cuDNN to the `PATH`. You can refer to the path setting of onnxruntime. Don't forget to install python package of TensorRT.

:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by echo `$env:PATH`.

:exclamation: It is recommended to add only one version of the TensorRT/cuDNN runtime libraries to the `PATH`. It is better not to copy the runtime libraries of TensorRT/cuDNN to the cuda directory in `C:\`.

7. Install pycuda by `pip install pycuda`

## Model Convert

### ONNX Runtime Example

The following describes how to use the prebuilt package to do model conversion based on the previous downloaded pth.

After preparation work, the structure of the current working directory should be:

```
..
|-- mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
```

Model conversion can be performed like below:

```python
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK

img = 'mmclassification/demo/demo.JPEG'
work_dir = 'work_dir/onnx/resnet'
save_file = 'end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_onnxruntime_dynamic.py'
model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
model_checkpoint = 'resnet18_8xb32_in1k_20210831-fbbb1da6.pth'
device = 'cpu'

# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
model_checkpoint, device)

# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint)
```

The structure of the converted model directory:

```bash
.\work_dir\
`-- onnx
`-- resnet
|-- deploy.json
|-- detail.json
|-- end2end.onnx
`-- pipeline.json
```

### TensorRT Example

The following describes how to use the prebuilt package to do model conversion based on the previous downloaded pth.

After installation of mmdeploy-tensorrt prebuilt package, the structure of the current working directory should be:

```
..
|-- mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmclassification
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
```
Model conversion can be performed like below:
```python
from mmdeploy.apis import torch2onnx
from mmdeploy.apis.tensorrt import onnx2tensorrt
from mmdeploy.backend.sdk.export_info import export2SDK
import os
img = 'mmclassification/demo/demo.JPEG'
work_dir = 'work_dir/trt/resnet'
save_file = 'end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_tensorrt_static-224x224.py'
model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
model_checkpoint = 'resnet18_8xb32_in1k_20210831-fbbb1da6.pth'
device = 'cpu'
# 1. convert model to IR(onnx)
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
model_checkpoint, device)
# 2. convert IR to tensorrt
onnx_model = os.path.join(work_dir, save_file)
save_file = 'end2end.engine'
model_id = 0
device = 'cuda'
onnx2tensorrt(work_dir, save_file, model_id, deploy_cfg, onnx_model, device)
# 3. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint)
```

The structure of the converted model directory:

```
.\work_dir\
`-- trt
`-- resnet
|-- deploy.json
|-- detail.json
|-- end2end.engine
|-- end2end.onnx
`-- pipeline.json
```

## Model Inference

You can obtain two model folders after model conversion.

```
.\work_dir\onnx\resnet
.\work_dir\trt\resnet
```

The structure of current working directory:

```
.
|-- mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|-- mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1
|-- mmclassification
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
`-- work_dir
```

### Backend Inference

:exclamation: It should be emphasized that `inference_model` is not for deployment, but shields the difference of backend inference api(`TensorRT`, `ONNX Runtime` etc.). The main purpose of this api is to check whether the converted model can be inferred normally.

#### ONNXRuntime

```python
from mmdeploy.apis import inference_model

model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_onnxruntime_dynamic.py'
backend_files = ['work_dir/onnx/resnet/end2end.onnx']
img = 'mmclassification/demo/demo.JPEG'
device = 'cpu'
result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
```

#### TensorRT

```python
from mmdeploy.apis import inference_model

model_cfg = 'mmclassification/configs/resnet/resnet18_8xb32_in1k.py'
deploy_cfg = 'mmdeploy/configs/mmcls/classification_tensorrt_static-224x224.py'
backend_files = ['work_dir/trt/resnet/end2end.engine']
img = 'mmclassification/demo/demo.JPEG'
device = 'cuda'
result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
```

### Python SDK

The following describes how to use the SDK's Python API for inference

#### ONNXRuntime

```bash
python .\mmdeploy\demo\python\image_classification.py .\work_dir\onnx\resnet\ .\mmclassification\demo\demo.JPEG
```

#### TensorRT

```
python .\mmdeploy\demo\python\image_classification.py .\work_dir\trt\resnet\ .\mmclassification\demo\demo.JPEG --device-name cuda
```

### C SDK

The following describes how to use the SDK's C API for inference

#### ONNXRuntime

1. Build examples

Under `mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1\sdk\example` directory

```
// Path should be modified according to the actual location
mkdir build
cd build
cmake .. -A x64 -T v142 `
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
-DONNXRUNTIME_DIR=C:\Deps\onnxruntime\onnxruntime-win-gpu-x64-1.8.1
cmake --build . --config Release
```

2. Add environment variables or copy the runtime libraries to the same level directory of exe

:point_right: The purpose is to make the exe find the relevant dll

If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1\sdk\bin`) to the `PATH`.

If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).

3. Inference:

It is recommended to use `CMD` here.

Under `mmdeploy-0.6.0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release` directory:

```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
```

#### TensorRT

1. Build examples

Under `mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example` directory

```
// Path should be modified according to the actual location
mkdir build
cd build
cmake .. -A x64 -T v142 `
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
-DTENSORRT_DIR=C:\Deps\tensorrt\TensorRT-8.2.3.0 `
-DCUDNN_DIR=C:\Deps\cudnn\8.2.1
cmake --build . --config Release
```

2. Add environment variables or copy the runtime libraries to the same level directory of exe

:point_right: The purpose is to make the exe find the relevant dll

If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`) to the `PATH`.

If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).

3. Inference

It is recommended to use `CMD` here.

Under `mmdeploy-0.6.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release` directory

```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
```

## Troubleshooting

If you encounter problems, please refer to [FAQ](../faq.md)
Loading

0 comments on commit 091bfc3

Please sign in to comment.