Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enhance] Speed up SimOTA matching. #7098

Merged
merged 1 commit into from
Feb 22, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions mmdet/core/bbox/assigners/sim_ota_assigner.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,27 +225,27 @@ def get_in_gt_and_in_center_info(self, priors, gt_bboxes):
return is_in_gts_or_centers, is_in_boxes_and_centers

def dynamic_k_matching(self, cost, pairwise_ious, num_gt, valid_mask):
matching_matrix = torch.zeros_like(cost)
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
# select candidate topk ious for dynamic-k calculation
candidate_topk = min(self.candidate_topk, pairwise_ious.size(0))
topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0)
# calculate dynamic k for each gt
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
for gt_idx in range(num_gt):
_, pos_idx = torch.topk(
cost[:, gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
matching_matrix[:, gt_idx][pos_idx] = 1.0
cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
matching_matrix[:, gt_idx][pos_idx] = 1

del topk_ious, dynamic_ks, pos_idx

prior_match_gt_mask = matching_matrix.sum(1) > 1
if prior_match_gt_mask.sum() > 0:
cost_min, cost_argmin = torch.min(
cost[prior_match_gt_mask, :], dim=1)
matching_matrix[prior_match_gt_mask, :] *= 0.0
matching_matrix[prior_match_gt_mask, cost_argmin] = 1.0
matching_matrix[prior_match_gt_mask, :] *= 0
matching_matrix[prior_match_gt_mask, cost_argmin] = 1
# get foreground mask inside box and center prior
fg_mask_inboxes = matching_matrix.sum(1) > 0.0
fg_mask_inboxes = matching_matrix.sum(1) > 0
valid_mask[valid_mask.clone()] = fg_mask_inboxes

matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)
Expand Down