Skip to content

Commit

Permalink
Merge 57a0218 into 60d848b
Browse files Browse the repository at this point in the history
  • Loading branch information
xizaoqu authored Feb 23, 2023
2 parents 60d848b + 57a0218 commit ab60a3d
Show file tree
Hide file tree
Showing 6 changed files with 599 additions and 3 deletions.
3 changes: 2 additions & 1 deletion mmdet3d/models/decode_heads/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .cylinder3d_head import Cylinder3DHead
from .dgcnn_head import DGCNNHead
from .paconv_head import PAConvHead
from .pointnet2_head import PointNet2Head

__all__ = ['PointNet2Head', 'DGCNNHead', 'PAConvHead']
__all__ = ['PointNet2Head', 'DGCNNHead', 'PAConvHead', 'Cylinder3DHead']
160 changes: 160 additions & 0 deletions mmdet3d/models/decode_heads/cylinder3d_head.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# Copyright (c) OpenMMLab. All rights reserved.

import torch
from mmcv.ops import SparseConvTensor, SparseModule, SubMConv3d

from mmdet3d.registry import MODELS
from mmdet3d.structures.det3d_data_sample import SampleList
from mmdet3d.utils import OptMultiConfig
from mmdet3d.utils.typing_utils import ConfigType
from .decode_head import Base3DDecodeHead


@MODELS.register_module()
class Cylinder3DHead(Base3DDecodeHead):
"""Cylinder3D decoder head.
Decoder head used in `Cylinder3D <https://arxiv.org/abs/2011.10033>`_.
Refer to the
`official code <https://https://github.com/xinge008/Cylinder3D>`_.
Args:
channels (int): Channels after modules, before conv_seg.
num_classes (int): Number of classes.
dropout_ratio (float): Ratio of dropout layer. Defaults to 0.
conv_cfg (dict or :obj:`ConfigDict`): Config of conv layers.
Defaults to dict(type='Conv1d').
norm_cfg (dict or :obj:`ConfigDict`): Config of norm layers.
Defaults to dict(type='BN1d').
act_cfg (dict or :obj:`ConfigDict`): Config of activation layers.
Defaults to dict(type='ReLU').
loss_ce (dict or :obj:`ConfigDict`): Config of CrossEntropy loss.
Defaults to dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
class_weight=None,
loss_weight=1.0).
loss_lovasz (dict or :obj:`ConfigDict`): Config of Lovasz loss.
Defaults to dict(type='LovaszLoss', loss_weight=1.0).
conv_seg_kernel_size (int): The kernel size used in conv_seg.
Defaults to 3.
ignore_index (int): The label index to be ignored. When using masked
BCE loss, ignore_index should be set to None. Defaults to 0.
init_cfg (dict or :obj:`ConfigDict` or list[dict or :obj:`ConfigDict`],
optional): Initialization config dict. Defaults to None.
"""

def __init__(self,
channels: int,
num_classes: int,
dropout_ratio: float = 0,
conv_cfg: ConfigType = dict(type='Conv1d'),
norm_cfg: ConfigType = dict(type='BN1d'),
act_cfg: ConfigType = dict(type='ReLU'),
loss_ce: ConfigType = dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
class_weight=None,
loss_weight=1.0),
loss_lovasz: ConfigType = dict(
type='LovaszLoss', loss_weight=1.0),
conv_seg_kernel_size: int = 3,
ignore_index: int = 0,
init_cfg: OptMultiConfig = None) -> None:
super(Cylinder3DHead, self).__init__(
channels=channels,
num_classes=num_classes,
dropout_ratio=dropout_ratio,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
conv_seg_kernel_size=conv_seg_kernel_size,
init_cfg=init_cfg)

self.loss_lovasz = MODELS.build(loss_lovasz)
self.loss_ce = MODELS.build(loss_ce)
self.ignore_index = ignore_index

def build_conv_seg(self, channels: int, num_classes: int,
kernel_size: int) -> SparseModule:
return SubMConv3d(
channels,
num_classes,
indice_key='logit',
kernel_size=kernel_size,
stride=1,
padding=1,
bias=True)

def forward(self, sparse_voxels: SparseConvTensor) -> SparseConvTensor:
"""Forward function."""
sparse_logits = self.cls_seg(sparse_voxels)
return sparse_logits

def loss_by_feat(self, seg_logit: SparseConvTensor,
batch_data_samples: SampleList) -> dict:
"""Compute semantic segmentation loss.
Args:
seg_logit (SparseConvTensor): Predicted per-voxel
segmentation logits of shape [num_voxels, num_classes]
stored in SparseConvTensor.
batch_data_samples (List[:obj:`Det3DDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components.
"""

gt_semantic_segs = [
data_sample.gt_pts_seg.voxel_semantic_mask
for data_sample in batch_data_samples
]
seg_label = torch.cat(gt_semantic_segs)
seg_logit_feat = seg_logit.features
loss = dict()
loss['loss_ce'] = self.loss_ce(
seg_logit_feat, seg_label, ignore_index=self.ignore_index)
seg_logit_feat = seg_logit_feat.permute(1, 0)[None, :, :,
None] # pseudo BCHW
loss['loss_lovasz'] = self.loss_lovasz(
seg_logit_feat, seg_label, ignore_index=self.ignore_index)

return loss

def predict(
self,
inputs: SparseConvTensor,
batch_inputs_dict: dict,
batch_data_samples: SampleList,
) -> torch.Tensor:
"""Forward function for testing.
Args:
inputs (SparseConvTensor): Feature from backbone.
batch_inputs_dict (dict): Input sample dict which includes 'points'
and 'voxels' keys.
- points (List[Tensor]): Point cloud of each sample.
- voxels (dict): Dict of voxelized voxels and the corresponding
coordinates.
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`. We use `point2voxel_map` in this function.
Returns:
List[torch.Tensor]: List of point-wise segmentation logits.
"""
seg_logits = self.forward(inputs).features

seg_pred_list = []
coors = batch_inputs_dict['voxels']['voxel_coors']
for batch_idx in range(len(batch_data_samples)):
seg_logits_sample = seg_logits[coors[:, 0] == batch_idx]
point2voxel_map = batch_data_samples[
batch_idx].gt_pts_seg.point2voxel_map.long()
point_seg_predicts = seg_logits_sample[point2voxel_map]
seg_pred_list.append(point_seg_predicts)

return seg_pred_list
13 changes: 12 additions & 1 deletion mmdet3d/models/decode_heads/decode_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,8 @@ class Base3DDecodeHead(BaseModule, metaclass=ABCMeta):
loss_decode (dict or :obj:`ConfigDict`): Config of decode loss.
Defaults to dict(type='mmdet.CrossEntropyLoss', use_sigmoid=False,
class_weight=None, loss_weight=1.0).
conv_seg_kernel_size (int): The kernel size used in conv_seg.
Defaults to 1.
ignore_index (int): The label index to be ignored. When using masked
BCE loss, ignore_index should be set to None. Defaults to 255.
init_cfg (dict or :obj:`ConfigDict` or list[dict or :obj:`ConfigDict`],
Expand All @@ -69,6 +71,7 @@ def __init__(self,
use_sigmoid=False,
class_weight=None,
loss_weight=1.0),
conv_seg_kernel_size: int = 1,
ignore_index: int = 255,
init_cfg: OptMultiConfig = None) -> None:
super(Base3DDecodeHead, self).__init__(init_cfg=init_cfg)
Expand All @@ -81,7 +84,10 @@ def __init__(self,
self.loss_decode = MODELS.build(loss_decode)
self.ignore_index = ignore_index

self.conv_seg = nn.Conv1d(channels, num_classes, kernel_size=1)
self.conv_seg = self.build_conv_seg(
channels=channels,
num_classes=num_classes,
kernel_size=conv_seg_kernel_size)
if dropout_ratio > 0:
self.dropout = nn.Dropout(dropout_ratio)
else:
Expand All @@ -97,6 +103,11 @@ def forward(self, feats_dict: dict) -> Tensor:
"""Placeholder of forward function."""
pass

def build_conv_seg(self, channels: int, num_classes: int,
kernel_size: int) -> nn.Module:
"""Build Convolutional Segmentation Layers."""
return nn.Conv1d(channels, num_classes, kernel_size=kernel_size)

def cls_seg(self, feat: Tensor) -> Tensor:
"""Classify each points."""
if self.dropout is not None:
Expand Down
3 changes: 2 additions & 1 deletion mmdet3d/models/losses/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

from .axis_aligned_iou_loss import AxisAlignedIoULoss, axis_aligned_iou_loss
from .chamfer_distance import ChamferDistance, chamfer_distance
from .lovasz_loss import LovaszLoss
from .multibin_loss import MultiBinLoss
from .paconv_regularization_loss import PAConvRegularizationLoss
from .rotated_iou_loss import RotatedIoU3DLoss, rotated_iou_3d_loss
Expand All @@ -12,5 +13,5 @@
'FocalLoss', 'SmoothL1Loss', 'binary_cross_entropy', 'ChamferDistance',
'chamfer_distance', 'axis_aligned_iou_loss', 'AxisAlignedIoULoss',
'PAConvRegularizationLoss', 'UncertainL1Loss', 'UncertainSmoothL1Loss',
'MultiBinLoss', 'RotatedIoU3DLoss', 'rotated_iou_3d_loss'
'MultiBinLoss', 'RotatedIoU3DLoss', 'rotated_iou_3d_loss', 'LovaszLoss'
]
Loading

0 comments on commit ab60a3d

Please sign in to comment.