Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Refactor] Refactor FCAF3D #1945

Merged
merged 16 commits into from
Oct 31, 2022
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion configs/_base_/datasets/scannet-3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin'))

file_client_args = dict(backend='disk')
# file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
Expand Down
20 changes: 20 additions & 0 deletions configs/_base_/models/fcaf3d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
model = dict(
type='MinkSingleStage3DDetector',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(type='MinkResNet', in_channels=3, depth=34),
bbox_head=dict(
type='FCAF3DHead',
in_channels=(64, 128, 256, 512),
out_channels=128,
voxel_size=.01,
pts_prune_threshold=100000,
pts_assign_threshold=27,
pts_center_threshold=18,
n_classes=18,
n_reg_outs=6,
center_loss=dict(type='mmdet.CrossEntropyLoss', use_sigmoid=True),
bbox_loss=dict(type='AxisAlignedIoULoss'),
cls_loss=dict(type='mmdet.FocalLoss'),
),
train_cfg=dict(),
test_cfg=dict(nms_pre=1000, iou_thr=.5, score_thr=.01))
91 changes: 91 additions & 0 deletions configs/fcaf3d/fcaf3d_8xb2_scannet-3d-18class.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
_base_ = [
'../_base_/models/fcaf3d.py', '../_base_/default_runtime.py',
'../_base_/datasets/scannet-3d.py'
]
n_points = 100000

train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(type='LoadAnnotations3D'),
dict(type='GlobalAlignment', rotation_axis=2),
dict(type='PointSample', num_points=n_points),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.087266, 0.087266],
scale_ratio_range=[.9, 1.1],
translation_std=[.1, .1, .1],
shift_height=False),
dict(type='NormalizePointsColor', color_mean=None),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(type='GlobalAlignment', rotation_axis=2),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointSample', num_points=n_points),
dict(type='NormalizePointsColor', color_mean=None),
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
dataset=dict(
type='RepeatDataset',
times=10,
dataset=dict(pipeline=train_pipeline, filter_empty_gt=True)))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=0.001, weight_decay=0.0001),
clip_grad=dict(max_norm=10, norm_type=2))

# learning rate
param_scheduler = dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)

custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)]

# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=12)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
87 changes: 87 additions & 0 deletions configs/fcaf3d/fcaf3d_8xb2_sunrgbd-3d-10class.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
_base_ = [
'../_base_/models/fcaf3d.py', '../_base_/default_runtime.py',
'../_base_/datasets/sunrgbd-3d.py'
]
n_points = 100000

model = dict(
bbox_head=dict(
n_classes=10, n_reg_outs=8, bbox_loss=dict(type='RotatedIoU3DLoss')))

train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(type='LoadAnnotations3D'),
dict(type='PointSample', num_points=n_points),
dict(type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.523599, 0.523599],
scale_ratio_range=[0.85, 1.15],
translation_std=[.1, .1, .1],
shift_height=False),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointSample', num_points=n_points)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]

train_dataloader = dict(
batch_size=8,
dataset=dict(
type='RepeatDataset',
times=3,
dataset=dict(pipeline=train_pipeline, filter_empty_gt=True)))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader

optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=0.001, weight_decay=0.0001),
clip_grad=dict(max_norm=10, norm_type=2))

# learning rate
param_scheduler = dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)

custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)]

# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=12)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
3 changes: 2 additions & 1 deletion mmdet3d/evaluation/metrics/indoor_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,9 @@ def compute_metrics(self, results: list) -> Dict[str, float]:
ann_infos.append(eval_ann)
pred_results.append(sinlge_pred_results)

# some checkpoints may not record the key "box_type_3d"
box_type_3d, box_mode_3d = get_box_type(
self.dataset_meta['box_type_3d'])
self.dataset_meta.get('box_type_3d', 'depth'))

ret_dict = indoor_eval(
ann_infos,
Expand Down
4 changes: 2 additions & 2 deletions mmdet3d/models/backbones/mink_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def __init__(self, depth, in_channels, num_stages=4, pool=True):

for i, num_blocks in enumerate(stage_blocks):
setattr(
self, f'layer{i}',
self, f'layer{i + 1}',
ZCMax marked this conversation as resolved.
Show resolved Hide resolved
self._make_layer(block, 64 * 2**i, stage_blocks[i], stride=2))

def init_weights(self):
Expand Down Expand Up @@ -111,6 +111,6 @@ def forward(self, x):
x = self.maxpool(x)
outs = []
for i in range(self.num_stages):
x = getattr(self, f'layer{i}')(x)
x = getattr(self, f'layer{i + 1}')(x)
outs.append(x)
return outs
3 changes: 2 additions & 1 deletion mmdet3d/models/dense_heads/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from .base_conv_bbox_head import BaseConvBboxHead
from .base_mono3d_dense_head import BaseMono3DDenseHead
from .centerpoint_head import CenterHead
from .fcaf3d_head import FCAF3DHead
from .fcos_mono3d_head import FCOSMono3DHead
from .free_anchor3d_head import FreeAnchor3DHead
from .groupfree3d_head import GroupFree3DHead
Expand All @@ -22,5 +23,5 @@
'SSD3DHead', 'BaseConvBboxHead', 'CenterHead', 'ShapeAwareHead',
'BaseMono3DDenseHead', 'AnchorFreeMono3DHead', 'FCOSMono3DHead',
'GroupFree3DHead', 'PointRPNHead', 'SMOKEMono3DHead', 'PGDHead',
'MonoFlexHead', 'Base3DDenseHead'
'MonoFlexHead', 'Base3DDenseHead', 'FCAF3DHead'
]
Loading